Tìm x biết l4-2xl+lx-2l=2-x
Giúp mình với mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Py ta go ta có
BC2=AB2+AC2
=> 122=52+AC2
=> AC2=122-52= 119
=> AC=
Tự vẽ hình nhé ?
a) Xét ∆ABC vuông tại B có :
AB2 + BC2 = AC2 (định lí pi-ta-go)
Mà AB = 5cm (GT), BC = 12cm (GT)
=> 52 + 122 = AC2
=> 25 + 144 = AC2
=> AC2 = 169
=> AC2 = \(\sqrt{169}\)
=> AC = 13cm (đpcm)
b) Xét ∆ABI và ∆AMI có :
AI chung
\(\widehat{BAI}=\widehat{MAI}\) (do AI là tia pg của \(\widehat{BAC}\)(GT))
AB = AM (GT)
=> ∆ABI = ∆AMI (c.g.c) (1)
c) Từ (1) => BI = MI (2 cạnh tương ứng) (2)
Từ (1) => \(\widehat{ABI}=\widehat{AMI}\)(2 góc t.ứng)
Mà \(\widehat{ABI}=\widehat{HBI}=90^o\)(do AB ⊥ AC (GT))
Ngoặc 2 điều trên
=> \(\widehat{HBI}=\widehat{AMI}=90^o\)(3)
Mà \(\widehat{AMI}+\widehat{CMI}=180^o\)(kề bù)
=> \(\widehat{CMI}=90^o\)(4)
Từ (3), (4) => \(\widehat{HBI}=\widehat{CMI}\)(5)
Xét ∆BIH và ∆MIC có :
\(\widehat{BIH}=\widehat{MIC}\)(đối đỉnh)
BI = MI (Theo (2))
\(\widehat{HBI}=\widehat{CMI}\)(Theo (5))
=> ∆BIH = ∆MIC (g.c.g) (6)
=> IH = IC (2 cạnh t.ứng)
P/s : Không biết có phải bạn chép sai đề không chứ IH không bằng IM nên mình suy ra vậy.
d) Gọi giao điểm của AI và HC là K
Từ (6) => BH = MC (2 cạnh t.ứng)
Mà AB = AM (GT)
AB + BH = AH
AM + MC = AC
=> AH = AC (7)
Xét ∆AHK và ∆ACK có :
AK chung
\(\widehat{HAK}=\widehat{CAK}\)(do AI là tia pg của \(\widehat{BAC}\)(GT))
AH = AC (Theo (7))
=> ∆AHK = ∆ACK (c.g.c) (8)
=> HK = CK (2 cạnh t.ứng)
Mà K nằm giữa H và C
=> K là trung điểm của HC (9)
Từ (8) => \(\widehat{AKH}=\widehat{AKC}\)(2 góc t.ứng)
Mà \(\widehat{AKH}+\widehat{AKC}=180^o\)(kề bù)
=> \(\widehat{AKH}=\widehat{AKC}=180^o:2=90^o\)
=> AK ⊥ HC (đ/n) (10)
Từ (9), (10) => AI là đường tr/trực của HC (đpcm)
Vậy...
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
A B C D E
a, xét tam giác ABD và tam giác EBD có : BD chung
^ABD = ^EBD do BD là pg của ^ABC (gt)
^BAD = ^BED = 90
=> tam giác ABD = tam giác EBD (ch-gn)
b, tam giác ABD = tam giác EBD (Câu a)
=> AB = BE (Đn)
=> tam giác ABE cân tại B (đn)
mà ^ABE = 60 (gt)
=> tam giác ABE đều (dh)
c, tam giác ABC vuông tại A (gt) => ^ACB = 90 - ^ABC (đl)
^ABC = 60 (Gt)
=> ^ACB = 30 mà tam giác ABC vuông tại A (gt)
=> AB = BC/2
AB = 5 cm (GT)
=> BC = 10
tam giác ABC vuông tại A (gt) => AB^2 + AC^2 = BC^2
AB = 5; BC = 10
=> AC^2 = 10^2 - 5^2
=> AC^2 = 75
=> AC = \(\sqrt{75}\) do AC > 0
A B C D 1 2 E
A)XÉT \(\Delta ABD\)VUÔNG VÀ \(\Delta EBD\)VUÔNG CÓ
\(\widehat{B_1}=\widehat{B_2}\left(GT\right)\)
BD LÀ CẠNH CHUNG
\(\Rightarrow\Delta ABD=\Delta EBD\left(CH-GN\right)\)
B) TA CÓ \(\Delta ABD=\Delta EBD\left(CMT\right)\)
\(\Rightarrow AB=EB\)(HAI CẠNH TƯƠNG ỨNG)
NÊN \(\Delta ABE\)CÂN TẠI B
C) XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180\)
THAY\(\widehat{90}+\widehat{60}+\widehat{C}=180\)
\(\Rightarrow\widehat{C}=30\)
MÀ TRONG TAM GIÁC VUÔNG , CẠNH ĐỐI DIỆN VỚI GÓC 30 ĐỘ BẰNG NỬA CẠNH HUYỀN(Đ/L)
\(\Rightarrow2AB=BC\)
THAY\(2.5=BC=10\left(cm\right)\)
XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(BC^2=AB^2+AC^2\left(Đ/LPY-TA-GO\right)\)
THAY\(10^2=5^2+AC^2\)
\(100=25+AC^2\)
\(\Rightarrow AC^2=100-25\)
\(\Rightarrow AC^2=75\)
\(\Rightarrow AC=\sqrt{75}=5\sqrt{3}\)
A B C H E D
a, xét tam giác AHB và tam giác AHC có : ^AHC = ^AHB = 90
AB = AC do tam giác ABC cân tại A (gt)
AH chung
=> tam giác AHC = tam giác AHB (ch-cgv)
=> HB = HC (đn)
b, xét tam giác HEC và tam giác HDB có : ^HEC = ^HDB = 90
HC = HB (câu a)
^ABC = ^ACB do tam giác ABC cân tại A (gt)
=> tam giác HEC = tam giác HDB (ch-gn)
=> HE = HD (đn)
=> tam giác HED cân tại H (đn)
c, tam giác ABC cân tại A (gt) => = ^ACB = (180 - ^BAC) : 2 (tc)
^BAC= 120 (gt)
=> ^ACB = (180 - 120) : 2 = 30
tam giác vuông EHC vuông tại E (gt) => ^EhC = 90 - ^ACB
=> ^EHC = 60
^EHC = ^DHB
=> ^EHC = ^DHB = 60
^EHC + ^DHB + ^DHE = 180
=> ^DHE = 60
mà tam giác DHE cân tại H (câu b)
=> tam giác DHE đều
d, tam giác CEH = tam giác BDH (câu b)
=> CE = BD (đn)
AB = AC (câu a)
CE + EA = AC
BD + DA = AB
=> AE = AD
=> tam giác ADE cân tại A => ^AED = (180 - ^BAC) : 2
tam giác ABC cân tại A (gt) => ^ACB = (180 - ^BAC) : 2
=> ^AED = ^ACB mà 2 góc này đồng vị
=> DE//BC (đl)
hình em tự vẽ nhé
a) xét \(\Delta ABC\)cân tại A
=> \(AB=AC\)(t/c tam giác cân )
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(t/c tam giác cân )
xét \(\Delta ABH\)và \(\Delta ACH\)
\(AB=AC\left(cmt\right)\)
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{AHC}\left(gt\right)\)
=>\(\Delta ABH\)=\(\Delta ACH\)(ch-gn)
=> HB=HC(2c tứ)
=> \(\widehat{BAH}=\widehat{CAH}\left(2gtu\right)\)
b) xét \(\Delta BHD\)và \(\Delta CHE\)
\(\widehat{BDH}=\widehat{CEH}\left(gt\right)\)
\(BH=HC\left(cmt\right)\)
\(\widehat{DBH}=\widehat{ECH}\left(cmt\right)\)
=>\(\Delta BHD\)=\(\Delta CHE\)(ch-gn)
=>HD=HE(2c tứ)
=> \(\Delta HDE\)cân tại H ( đ/n)
ta có \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)
lại có:\(\widehat{BAH}=\widehat{CAH}\left(2gtu\right)\)
mà \(\widehat{BAC}=120^o\)
=>\(\widehat{BAH}=\widehat{CAH}=60^o\)
xét \(\Delta ADH\)\(:\widehat{ADH}+\widehat{DAH}+\widehat{DHA}=180^o\)(đ/lý)
thay số :
rồi suy ra ^DHA = 30 độ(1)
xét nốt \(\Delta AHE\)rồi suy ra ^AHE=30 độ(2) ( cách làm tương tự tam giác ADH)
từ (1) và (2) =>\(\Delta\) DHE - \(\Delta\)đều
d) HD : chứng minh \(\Delta ADE\)cân tại A
=> \(\widehat{ADE}=\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)
mà \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(cmt)
=> \(\widehat{ADE}=\widehat{ABC}\)
mà 2 góc này lại ở vị trí đồng vị của DE và BH
=> DE//BH
bye mik đi ngủ đây
Ta có M=\(\frac{5-x}{x-2}=\frac{-\left(x-5\right)}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
Để M nguyên thì \(x-2\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
x-2 | -3 | -1 | 1 | 3 |
x | -1 | 1 | 3 | 5 |
Vậy x={-1,1,3,5}
để M nguyên
=> \(5-x⋮x-2\)và \(x\ne2\)
vì x-2\(⋮x-2\)
=> -(x-2)\(⋮x-2\)
=>\(\left(5-x\right)-\left[-\left(x-2\right)\right]⋮x-2\)
\(\Rightarrow3⋮x-2\)
=>\(x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
ta có bảng
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 2 | 5 | -1 |
mà \(x\ne2\)
=> \(x\in\left\{3;5;-1\right\}\)
ab=a^2+2ab+b^2
a^2+ab+b^2=0
vì a,b là số tự nhiên nên ko có ab thỏa mãn
2xy-x-y=2
=> 4xy-2x-2y=4
=> 4xy-2x-2y+1=5
=> 2x(2y-1) -(2y-1)=5
=> (2x-1)(2y-1)=5
5=-1.-5=1.5
tự suy ra TH làm nha
x(2y-1) - y = 2
2x(2y-1) - 2y = 4
2x(2y-1) - 2y + 1 = 4+1
=> 2x(2y-1) - (2y-1) = 5
=> (2y-1)(2x-1) = 5
Kẻ bảng => (x:y)=(3;1), (-2;0) và ngược lại
tớ cs 1 cách mừ cực kì đơn giản ==>> phá ngoặc ính BT
\(\left|4-2x\right|+\left|x-2\right|=2-x\)
\(4-2x+x-2=2-x\)
\(2-x-2+x=0\)
\(x=0\left(tm\right)\)
Dùng bảng xét dấu :
x 2 [4-2x] [x-2] Vế trái 2x-4 4-2x 2-x x-2 x-2 2-x
Nếu \(x< 2\)
\(\Rightarrow x-2=2-x\Rightarrow2x=4\Rightarrow x=2\left(ktm\right)\)
Nếu \(x\ge2\)
\(\Rightarrow2-x=2-x\Rightarrow0=0\)( luôn đúng )
\(\Rightarrow x\ge2\)