Cho phương trình bậc hai: \(x^2-2\left(a-1\right)x+a^2+a-2=0\) .Tìm a để phương trình có hai nghiệm \(x_1,x_2\) thỏa mãn \(P=x^2_1+x^2_2\) đạt giá trị nhỏ nhất.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
LH
0
![](https://rs.olm.vn/images/avt/0.png?1311)
NV
4
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
14 tháng 8 2018
\(A=\frac{1}{\sqrt{x}+\sqrt{x-1}}-\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x\sqrt{x}}{1-\sqrt{x}}\)
\(=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}-\frac{\sqrt{x}+\sqrt{x-1}}{\left(\sqrt{x}-\sqrt{x-1}\right)\left(\sqrt{x}+\sqrt{x-1}\right)}-\frac{x\sqrt{x}\left(1+\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\)
NB
0
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Delta'=\left(a-1\right)^2-\left(a^2+a-2\right)=-3a+3\)
Để phương trình có hai nghiệm \(x_1;x_2\) thì \(\Delta'\ge0\Leftrightarrow-3a+3\ge0\Leftrightarrow a\le1\)
Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(a-1\right)\\x_1.x_2=a^2+a-2\end{cases}}\)
Vậy thì \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(a-1\right)^2-2\left(a^2+a-2\right)\)
\(=2a^2-10a+8=2\left(a^2-5a+\frac{25}{4}\right)-\frac{9}{2}=2\left(a-\frac{5}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(\text{min}P=-\frac{9}{2}\Leftrightarrow a=\frac{5}{2}.\)
Bài giải :
Δ'=(a−1)2−(a2+a−2)=−3a+3
Để phương trình có hai nghiệm x1;x2 thì Δ'≥0⇔−3a+3≥0⇔a≤1
Áp dụng hệ thức Viet ta có: {
Vậy thì P=x12+x22=(x1+x2)2−2x1.x2=4(a−1)2−2(a2+a−2)
=2a2−10a+8=2(a2−5a+254 )−92 =2(a−52 )2−92
Với a≤1⇒P≥0
Vậy minP = 0 khi a = 1.