K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

a, 3x^2 + 13x + 10  

= 3x^2 + 3x + 10x + 10 

= 3x(x + 1) + 10(x + 1)

= (3x + 10)(x + 1)

b, x^2 - 10x + 21

= x^2 - 3x - 7x + 21

= x(x - 3) - 7(x - 3)

= (x - 7)(x - 3)

c, 6x^2 - 5x + 1

= 6x^2 - 3x - 2x + 1

= 3x(2x - 1) - (2x - 1)

= (3x - 1)(2x - 1)

24 tháng 7 2019

Bạn đăng 1 lần nhiều bài như vậy làm người khác nản lắm đấy =) đơn giản bài rất dài mà mik cx ko chắc là bản thân mik có đc k hay ko nên phải nản vậy thôi :)

1a)\(3x^2+13x+10=3x^2+3x+10x+10\)

\(3x\left(x+1\right)+10\left(x+1\right)=\left(3x+10\right)\left(x+1\right)\)

b)\(x^2-10x+21=x^2-3x-7x+21\)

\(=x\left(x-3\right)-7\left(x-3\right)=\left(x-7\right)\left(x-3\right)\)

c)\(6x^2-5x+1=6x^2-3x-2x+1\)

\(=3x\left(2x-1\right)-\left(2x-1\right)=\left(3x-1\right)\left(2x-1\right)\)

23 tháng 8 2021

Gọi E là giao điểm của BH và AC

AD là tia phân giác góc A
AH là đường cao của ΔABE

AH là tia phân giác của \(\widehat{BAE}\)

\(\Rightarrow\Delta ABE\) cân tại A

\(\Rightarrow AB=AE\)

Theo đề ra: AB = 12cm => AE = 12cm

\(EC=AC-AE=18-12=6cm\)

AH là đường cao của ΔABE cân tại A

=> AH là trung tuyến của ΔABE

=> H là trung điểm của BE

Ta có: M là trung điểm của BC

=> HM là đường trung bình của ΔBEC

\(\Rightarrow HM=\frac{EC}{2}=\frac{6}{2}=3cm\)

24 tháng 7 2019

\(9x^2+90x+225-x+1\)

\(=9x^2+89x+226\)

24 tháng 7 2019

\(\left(2x+1\right)^2-\left(x-1\right)=4x^2+4x+1-x+1\)

\(=4x^2+3x\)

\(=x\left(4x+3\right)\)

24 tháng 7 2019

a)  Có \(x+1< x+2\)

\(\Rightarrow\sqrt{x+1}< \sqrt{x+2}\)

\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+2}}< 1\)

b)  Vì \(\sqrt{x+1}< \sqrt{x+2}\)

\(\Rightarrow\sqrt{x+1}.\sqrt{x+1}.\sqrt{x+2}< \sqrt{x+2}.\sqrt{x+1}.\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}^2.\sqrt{x+2}< \sqrt{x+2}^2.\sqrt{x+1}\)

\(\Rightarrow\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}< \frac{\sqrt{x+1}}{\sqrt{x+2}}\)

hay \(\frac{\sqrt{x+1}}{\sqrt{x+2}}>\frac{\sqrt{x+1}^2}{\sqrt{x+2}^2}\)

24 tháng 7 2019

\(G=-x^2+2xy-4y^2+2x+10y-8\)

  \(=-\left(x^2-2xy+y^2+1-2x+2y\right)-3\left(y^2-4y+4\right)+5\) 

  \(=-\left(y+1-x\right)^2-3\left(y-2\right)^2+5\le5\)

MaxQ=5 khi \(\hept{\begin{cases}y+1-x=0\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}\)

24 tháng 7 2019

\(x^2-y=y^2-x\)

\(\Rightarrow x^2-y^2+x-y=0\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)

Vì \(x\ne y\Rightarrow x-y\ne0\Rightarrow x+y+1=0\)

\(\Rightarrow x+y=-1\)và \(x+y-3=-4\)\(\left(1\right)\)

\(M=x^2+2xy-3x-3y+y^2\)

\(=\left(x+y\right)^2-3\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-3\right)\)

TThay (1) vào M , ta có :

\(M=\left(-1\right).\left(-4\right)=4\)