Cho tam giác ABC vuông cân tại A có đường cao AH . Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=CE. Gọi I là trung điểm của DE . CMR:
a,HD=HE
b, IA=IH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
từ câu a) ta có: \(\orbr{\begin{cases}x=y+1\\x=y-1\end{cases}}\) và \(\hept{\begin{cases}x-y=t-z\\y=t\end{cases}}\) (3)
+) Với \(x=y+1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y+1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z+1\\y=t\end{cases}}\)
\(\Rightarrow\)\(x=y+1=z+2\) ( x,y,z là 3 số nguyên liên tiếp )
+) Với \(x=y-1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y-1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z-1\\y=t\end{cases}}\)
\(\Rightarrow\)\(x=y-1=z-2\) ( x,y,z là 3 số nguyên liên tiếp )
\(x+z=y+t\)\(\Leftrightarrow\)\(x^2+z^2+2xz=y^2+t^2+2yt\) (1)
Mà \(xz+1=yt\)\(\Leftrightarrow\)\(2xz+2=2yt\)
(1) \(\Leftrightarrow\)\(x^2+z^2+2yt=y^2+t^2+2xz+4\)
\(\Leftrightarrow\)\(\left(x-z\right)^2-\left(y-t\right)^2=4\)
\(\Leftrightarrow\)\(\left(x-z-y+t\right)\left(x-z+y-t\right)=4\) (2)
Lại có: \(x+z=y+t\)\(\Rightarrow\)\(\hept{\begin{cases}x-y=t-z\\x-t=y-z\end{cases}}\)
(2) \(\Leftrightarrow\)\(\left(x-y\right)\left(x-t\right)=1\)
TH1: \(\hept{\begin{cases}x-y=1\\x-t=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\x=t+1\end{cases}}\Leftrightarrow y=t\)
TH2: \(\hept{\begin{cases}x-y=-1\\x-t=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-1\\x=t-1\end{cases}}\Leftrightarrow y=t\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x-y+1\right)^2+\left(y-2\right)^2=1\)
\(\Rightarrow\left(y-2\right)^2\le1\)
\(\Rightarrow\orbr{\begin{cases}y-2=0\\\left(y-2\right)^2=1\end{cases}}\)
Rồi tìm được y ,thế vô tìm đc x
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn hỏi sớm hơn nữa nhé hỏi mụn lúc này ít ai tloi lắm
a) \(A=\frac{1}{4}x^2+x-2\)
\(=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.1+1-3\)
\(=\left(\frac{1}{2}x+1\right)^2-3\)
Vì \(\left(\frac{1}{2}x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(\frac{1}{2}x+1\right)^2-3\ge0-3;\forall x\)
Hay \(A\ge-3;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\frac{1}{2}x+1\right)^2=0\)
\(\Leftrightarrow x=-2\)
Vậy MIN A=-3 \(\Leftrightarrow x=-2\)
Các câu khác cứ việc khai triển ra hằng đẳng thức mũ chẵn mà làm nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-1\right)^2+\left(2y-3\right)^2=5\)
\(\Rightarrow\left(2y-3\right)^2\le5\)
Mà 2y - 3 lẻ nên \(\left(2y-3\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}2y-3=1\\2y-3=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)
Thay vô rồi tìm đc x