K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

ta có 

x2\(\ge\)0

x2+2>0->(x2+2)3>0

suy ra\(\frac{x^2}{\left(x^2+2\right)^3}\)\(\ge\)0

vậy min =0

17 tháng 8 2018

ê, mình nhầm nha, x, y, z>0


 

17 tháng 8 2018

Áp dụng BĐT AM-GM và BĐT Nesbitt ta có :

\(P=\frac{2x}{\sqrt{4\left(y+z-4\right)}}+\frac{2y}{\sqrt{4\left(x+z-4\right)}}+\frac{2z}{\sqrt{4\left(x+y-4\right)}}\)

\(\ge\frac{2x}{\frac{4+y+z-4}{2}}+\frac{2y}{\frac{4+x+z-4}{2}}+\frac{2z}{\frac{4+x+y-4}{2}}\)

\(=4\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\cdot4=6\)

Dấu "=" xảy ra khi \(x=y=z=4\)

17 tháng 8 2018

Áp dụng BĐT Cauchy-SChwarz ta có:

\(VT=\frac{a^4}{a^2+2a^2bc}+\frac{b^4}{b^2+2ab^2c}+\frac{c^4}{c^2+2abc^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2abc\left(a+b+c\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(ab+bc+ca\right)^2}{3}}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2\cdot\frac{\left(a^2+b^2+c^2\right)^2}{3}}\)

\(\ge\frac{1^2}{1+2\cdot\frac{1^2}{3}}=\frac{3}{5}=VP\)

Dấu "=" bạn tự nghiên cứu nhé :D

9 tháng 9 2018

DẤU BẰNG XẢY RA\(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\) CÁI NÀY LÀ ĐIỂM RƠI NHÉ.