Cho a,b >0 và a2 +b2 =1 . TÌm giá trị nhỏ nhất của biểu thức
\(T=\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si cho 3 số dương
\(\frac{a}{b};\frac{b}{c};\frac{c}{a}\)ta có :
\(\left(\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{3}\right)^3\ge\frac{a}{b}.\frac{b}{c}.\frac{c}{a}=1\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\) Dấu "=" xảy ra <=> \(a=b=c\)
Ta có : \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}+\frac{m}{12}\) (1)
\(\Leftrightarrow9\left(2x+1\right)-2\left(5x+3\right)=4\left(2x-1\right)+m\)
\(\Leftrightarrow18x+9-10x-6=8x-4+m\)
\(\Leftrightarrow18x-10x-8x=m-4-9+6\)
\(\Leftrightarrow0x=m-7\) (2)
Từ (2) ta có nghiệm \(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\) ( m vô số nghiệm nếu ... )
Ta có :
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=\left(m+2\right)^2\)
- Nếu \(m\ne\pm2\) thì \(x=\frac{m+2}{m-2}\)
- Nếu \(m=2\) thì \(0x=16\)
=> P/trình vô nghiệm .
- Nếu \(m=-2\) thì \(0x=0\)
=> PT có nghiệm bất kì
.....
\(ĐKXĐ:x\ne-1\)
Đặt: \(u=\frac{5x-x^2}{x+1}\) , \(v=\frac{x^2+5}{x+1}\)
\(\Rightarrow u+v=5\)
Từ pt đã cho,ta có hệ:
\(\hept{\begin{cases}u+v=5\\uv=-14\end{cases}}\)
Vậy: u và v là nghiệm của pt: \(t^2-5t-14=0\)
Giải pt trên ,ta đc: \(t_1=-2,t_2=7\)
Hay: u=-2 , v=7 hoặc u=7 , v= -2
Thế vào phép đặt u và v ta đc:
\(x=\frac{7\pm\sqrt{57}}{2}\)
=.= hok tốt!!
câu hỏi ko tl cx thấy xàm xàm xàm xmà