Cho ∆ ABC cân tại A có A = 80° Lấy O trong ∆ ABC sao cho CBO = 30° , OCB = 10°
Chứng minh ∆AOC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(2x^2-8x+y^2+2y+9=0\)
\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0\forall x\); \(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy x=2;y=-1
Bài 4)
1) Xét ∆ vuông ABC có:
Vì AM trung tuyến BC
=> BM = MC
=> AM = BM = MC ( Trong ∆ vuông đường trung tuyến ứng với cạnh huyền = nửa cạnh huyền)
=> ∆ABM cân tại M
=> ∆MAC cân tại M
a, A = -x^2 + 2xy - y^2
-A = x^2 - 2xy + y^2
-A = (x - y)^2
A = -(x - y)^2
b, sai đề
c, x^3 - 3x^2 + 3x - 1
= (x - 1)^3
A B C D M
Xét \(\Delta ABC\)vuông tại A,đường trung tuyến AM.
Ta sẽ chứng minh AM = \(\frac{1}{2}\)BC
Trên tia đối của tia MA,lấy điểm D sao cho MD = MA.
Ta có : \(AM=\frac{1}{2}AD\),cần chứng minh AD = BC.Dễ thấy :
\(\Delta BMD=\Delta CMA(c.g.c)\Rightarrow BD=AC,\widehat{B}_1=\widehat{C}\) do đó " \(BD//AC\).
Ta lại có : \(\widehat{BAC}=90^0\)nên \(\widehat{ABD}=90^0\). Do đó \(\Delta CAB=\Delta DBA\)
Vì cạnh AB chung, \(\widehat{CAB}=\widehat{DBA}=90^0,AC=BD\)
=> BC = AD
Vậy : \(AM=\frac{1}{2}BC\)
Cách 2 : Tự vẽ hình
Xét tam giác ABC vuông tại A,trung tuyến AD.Ta cần đi chứng minh : \(AD=\frac{1}{2}BC\)
Giả sử trái lại,tức là \(AD\ne\frac{1}{2}BC\)
Nếu \(AD>\frac{1}{2}BC\),suy ra :
AD > BD <=> \(\widehat{B}>\widehat{A}_2\),AD >CD <=> \(\widehat{C}>\widehat{A}_1\)
=> \(\widehat{B}+\widehat{C}>\widehat{A}_2+\widehat{A}_1\Leftrightarrow90^0>\widehat{A}\) mâu thuẫn
Nếu \(AD< \frac{1}{2}BC\),suy ra AD < BD <=> \(\widehat{B}< \widehat{A}_2,AD< CD\Leftrightarrow\widehat{C}< \widehat{A}_1\)
=> \(\widehat{B}+\widehat{C}< \widehat{A}_2+\widehat{A}_1\Leftrightarrow90^0< \widehat{A}\),mâu thuẫn
Vậy ta luôn có : AD = 1/2BC
Tự vé hình:
a) ΔAED=ΔBFC(ch−gn)ΔAED=ΔBFC(ch−gn)
⇒AE=CF⇒AE=CF
ΔAFB=ΔCFD(c−g−c)ΔAFB=ΔCFD(c−g−c)
⇒AE=FC⇒AE=FC
từ 2 điều trên => tứ giác AECF là hình bình hành
b) Ta có: AK//IC (vì AB//CD ,mà K thuộc AB, I thuộc CD)
tương tự : AI//KC
=> Tứ giác AKCI là hình bình hành
=> AI = CK
c) ΔBEC=ΔAFD(cmt)ΔBEC=ΔAFD(cmt)
=> BF=DE
Mà BE=BF +EF
DF=DE+EF
=> BE=DF ( đpcm)
Ta có :
AE⊥BD,CF⊥BD⇒AE⊥BD,CF⊥BD⇒ AE // CF (1)(1)
ΔADE=ΔCFB(ch−gn)ΔADE=ΔCFB(ch−gn)
⇒AE=CF⇒AE=CF (2)(2)
Từ (1)(2)⇒AECF(1)(2)⇒AECF là hình bình hành
b, ABCD là hình bình hành
=> AB // CD Hay AK // CI
AECF là hình bình hành
=> AE // CF => AI // CK
Mà AK // CI
=> AKCI là hình bình hành
=> AI = CK
ΔADE=ΔCFB(ch−gn)ΔADE=ΔCFB(ch−gn)
=> BE = DF
#)Giải :
1) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)
\(\Leftrightarrow x^2-11x=0\Leftrightarrow x\left(x-11\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=11\end{cases}}\)
2) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-5^2\right)-\left(x^3+2^3\right)=17\)
\(\Leftrightarrow x^3-25x-x^3-8=17\)
\(\Leftrightarrow-25x=25\Leftrightarrow x=-1\)
3) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3+3x^2-27-x^3+27-9x^2+18x+9=15\)
\(\Leftrightarrow12x^2+12x+6x-6=0\)
\(\Leftrightarrow12x\left(x+1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\12x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)
Ta có: \(7-x^2-y^2-2\left(x+y\right)\)
\(=7-x^2-y^2-2x-2y\)
\(=-1-1+9-x^2-y^2-2x-2y\)
\(=\left(-x^2-2x-1\right)+\left(-y^2-2y-1\right)+9\)
\(=-\left(x^2+2x+1\right)-\left(y^2+2y+1\right)+9\)
\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\)
\(\text{Vì}-\left(x+1\right)^2\le0\)
\(\text{và}-\left(y+1\right)^2\le0\)
\(\Rightarrow-\left(x+1\right)^2-\left(y+1\right)^2\le0\)
\(\Rightarrow-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)
\(\text{Vậy GTLN = 9, dấu bằng xảy ra khi x = -1 và y = -1}\)
Câu hỏi của Thái Viết Nam - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo
https://olm.vn/hoi-dap/detail/81532999462.html
Xem ở link này (mình gửi cho)
Học tốt!!!!!!!!!!