Chứng minh:\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}\ge a\sqrt{b}+b\sqrt{a}\)
(SỬ dụng BĐT Cosy để giải)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì BC đi qua trung điểm HM
=>M là đối xứng với H qua BC
=> BC là trung trực HM
=> BM = BH
=> CM = CH
Xét ∆BHD và ∆BMC ta có :
BC chung
BH = BM
CH = CM
=> ∆BHD = ∆BMC (c.c.c)
b) Gọi giao điểm của BH và AC là D
Giao điểm của CH và AB là E
Vì H là trực tâm ∆ABC
=> CE\(\perp\)AB
=> BD \(\perp\)AC
Xét tứ giác AEHD ta có :
EAD + ADH + DHE + AEH = 360°
=> EHD = 360° - ( 70° + 90° + 90° ) = 110°
Vì EHD = BHC = 110° (đối đỉnh )
Vì ∆BHC = ∆BMC (cmt)
=> BHC = BMC = 110°
#)Giải :
Đặt \(\hept{\begin{cases}\frac{ab}{c}=x\\\frac{bc}{a}=y\\\frac{ca}{b}=z\end{cases}\Rightarrow\hept{\begin{cases}a^2=xz\\b^2=xy\\c^2=yz\end{cases}}\Rightarrow xy+yz+xz=3}\)
Theo hệ quả của BĐT Cauchy :
\(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=9\)
\(\Rightarrow x+y+z\ge3\) hay \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge3\left(đpcm\right)\)
Dấu ''='' xảy ra \(\Leftrightarrow\) a = b = c = 1
\(\text{3(x^2+\frac{4}{3}+\frac{4}{9}-\frac{49}{9})=3((X+\frac{2}{3})^2}-\frac{49}{9}\)
qua facebook BnoHi mình chỉ trực tiếp
Bài giải
Đặt \(A=3x^2+4x-5\)
\(=x\left(3x+4\right)-5\)
\(A\text{ đạt }GTNN\text{ khi }x\left(3x+4\right)\text{ đạt }GTNN\)
\(\text{Mà }x\left(3x+4\right)\ge0\)
\(\Rightarrow\text{ GNTT của }A=0\)
\(\Leftrightarrow\text{ }x=0\)
Vậy \(GTNN\text{ của }3x^2+4x-5\text{ là }0\)
Theo bất đẳng thức AM-GM:3xy=3.x.y.1=3\(\sqrt[3]{x^3.y^3.1}\)\(\le\)x3+y3+1 (1)
Tương tự như vậy:3yz\(\le\)y3+z3+1(2) ;3zx\(\le\)z3+x3+1(3)
Cộng vế theo vế các bất đẳng thức (1),(2) và (3), ta được:
3xy+3yz+3zx\(\le\)2(x3+y3+z3)+3
Tương đương với P-xyz\(\le\)2.6+3=9
Hay P\(\le\)xyz+9
Mặt khác, theo bất đẳng thức AM-GM: 3=x3+y3+z3\(\ge\)3xyz
Do đó xyz\(\le\)1
Suy ra P\(\le\)10
Vậy MaxP=10 đạt được khi x=y=z=1
#)Giải :
Áp dụng BĐT Cauchy cho hai số không âm :
\(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(a+b+\frac{1}{2}\right)\left(1\right)\)
Ta có: \(\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
\(\Leftrightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\Leftrightarrow a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\sqrt{ab}\left(a+b+\frac{1}{2}\right)\ge a\sqrt{b}+b\sqrt{a}\left(2\right)\)
Từ (1) và (2) \(\Rightarrowđpcm\)