Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK=MB. Chứng minh:
a, KC vuông góc với AC
b, AK // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Định lý 1: Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn.
Định lý 2: Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.
A B C H (lm theo cảm giác nghĩ là ko đúng :3333
ta thấy rằng ab bằng với ac nên cạnh ab cũng có là 15cm
vì đây là tam giác cân nên đoạn độ dài đáy có được chia ra làm hai nửa đều nhau nên cạnh HC cũng ;là 5m
hm hình như mik vẽ hình sai phải không hay lm sai
ta thấy
\(20^2+21^2=29^2\)
vậy đó là \(\Delta vuông\)và vuông tại A hoặc B
1. Vì \(AB\perp BI\) (gt) \(\Rightarrow\widehat{ABI}=90^o\) (đ/n), \(AC\perp CI\) (gt) \(\Rightarrow\widehat{ACI}=90^o\) (đ/n)
Xét \(\Delta ABI\) và \(\Delta ACI\) có: \(AB=AC\) (vì \(\Delta ABC\) cân tại A từ giả thiết), \(AI\) chung, \(\widehat{ABI}=\widehat{ACI}\left(=90^o\right)\)
\(\Rightarrow\Delta ABI=\Delta ACI\left(c.g.c\right)\Rightarrow IB=IC\) (2 cạnh tương ứng) (đpcm)
2. Vì \(\Delta ABI=\Delta ACI\) (cm câu a) \(\Rightarrow\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng) \(\left(\widehat{MIB}=\widehat{MIC}\right)\)
Xét \(\Delta MBI\) và \(\Delta MCI\) có: \(IB=IC\) (cm câu a), \(MI\) chung, \(\widehat{MIB}=\widehat{MIC}\) (cmt)
\(\Rightarrow\Delta MBI=\Delta MCI\left(c.g.c\right)\Rightarrow MB=MC\) (2 cạnh tương ứng) (đpcm)
3. Vì \(\Delta ABI=\Delta ACI\) (cm câu a) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng) \(\Rightarrow AI\) là tia phân giác của \(\widehat{BAC}\) (đ/n)
Xét \(\Delta ABC\) có: \(AI\) là tia phân giác của \(\widehat{BAC}\) (cmt)
\(\Rightarrow AI\) là đường phân giác của \(\Delta ABC\) (đ/n), mà \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow AI\) đồng thời là đường cao của \(\Delta ABC\) (t/c tam giác cân)
\(\Rightarrow AI\perp BC\) (đ/n) (đpcm)
\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(3B+B=\left(-1+\frac{1}{3}-...-\frac{1}{3^{50}}\right)+\left(-\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)
\(4B=-1-\frac{1}{3^{51}}\)
\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)
hok tốt!!
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)