cho tam giác ABC .gọi D,E,F lần lượt là trung điểm của BC,AC,AB.ở phía ngoài tam giác ấy vẽ FA vuông góc với FK và FA=FK, EG vuông góc vs EA và EG=EA.chứng minh tam giác DKG vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1
Áp dụng BĐT cosi ta có:
\(\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)
=> \(\frac{a^2}{b}+3b\ge2\sqrt{2\left(a^2+b^2\right)}\)
Tương tự
=> \(VT+3\left(a+b+c\right)\ge2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(a^2+c^2\right)}\)
Lại có \(\sqrt{2\left(a^2+b^2\right)}\ge a+b;\sqrt{2\left(b^2+c^2\right)}\ge b+c;\sqrt{2\left(a^2+c^2\right)}\ge a+c\)
=> \(VT\ge\frac{1}{\sqrt{2}}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
Cách 2 tương tự dùng Buniacoxki
A B C D M N P E
Hạ DE vuông góc BC tại E. Đường thẳng qua M song song với AB cắt BD tại P.
Ta có DE = AB = AD = BE = BC/2. Suy ra \(\Delta\)BCD vuông cân (^BDC = 900)
Dễ thấy \(\Delta\)DMP vuông cân tại M. Từ đó ^MPB = ^MDN (= 900 + 450 = 1350)
Kết hợp với MP = MD; ^PMB = ^DMN (= 900 - ^NMP) suy ra \(\Delta\)MBP = \(\Delta\)MND (c.g.c)
Vậy nên MB = MN (đpcm).
Vì FA = EC
BD = DC
=> DE là đường trung bình ∆ABC
=> ED = \(\frac{1}{2}\)AB = FA
Mà FA = FK
=> ED = FK
Vì FA = FB
BD = DC
=> FD là đường trung bình ∆ABC
=> FD = \(\frac{1}{2}\)AC = AE
Mà AE =EG
FD = EG
=> AE = FD
Ta có : CED = DFB = EDF ( so le trong)
=> KFD = DEG
Xét ∆KFD và ∆DEG ta có :
KF = DE (cmt)
FD = EG
KFD = DEG
=> ∆KFD = ∆DEG (c.g.c)
=> KD = DG
=> FKD = EDG
=> FDK = EGD
Mà EDG + EGD + DEC + GEC = 180°
=> EDG + EGD + DEC = 90°
=> EDG + FDK + EDF = 90°
=> GDK = 90°
Vì DK = DG
=> ∆DGK cân tại D
=> GDK = 90°
=> ∆DGK vuông cân tại D