so sánh 2023 mũ 2022 và 2022 mũ 2022 +2022 mũ 2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
Năm số thập phân nằm giữa 0 và 0,1 lần lượt là 5 số thập phân được sắp xếp theo thứ tự từ bé đến lớn của dãy số thập phân sau:
0,01; 0,02; 0,03; 0,04; 0,05
Số phân tử của T là:
\(\left(88-1\right):1+1=88\) (phần tử)
Số phần tử của M là:
\(\left(88-0\right):1+1=89\) (phần tử)
Lời giải:
Gọi số cần tìm là $a$. Theo bài ra ta có:
$a-2\vdots 6\Rightarrow a-2+6=a+4\vdots 6$
$a-3\vdots 7\Rightarrow a-3+7=a+4\vdots 7$
$a-5\vdots 9\Rightarrow a-5+9=a+4\vdots 9$
$\Rightarrow a+4\vdots 6,7,9$
$\Rightarrow a+4=BC(6,7,9)$
Để $a$ là stn nhỏ nhất thì $a+4$ là stn>0 nhỏ nhất chia hết cho $6,7,9$
Tức là $a+4=BCNN(6,7,9), a+4\neq 0$
$\Rightarrow a+4=126$
$\Rightarrow a=122$
Mình đã làm như sau:
A=298+22-298+294+22-294+…+22+22-22
=22+22+…+22 = 4+4+…+4
ð Mỗi số hạng trong tổng đều chia hết cho 4 thì => tổng chia hết cho 4
ð A chia hết cho 4
Nhưng bé nhà mình cứ kêu đúng nhưng ko giống cách làm của học sinh lớp 6
Vậy OLM vui lòng cho mình hỏi còn cách làm nào phù hợp với học sinh lớp 6 không ah?
Tham khảo vì mik hơi lừi;
Vì x là số nhỏ nhất và x chia hết 15 và 18
=>x �ε BCNN ( 15;18)
15=3.5
18=2.32
=>BCNN(15;18)=32 . 5.2=90
Vậy x=90
Vì x là số nhỏ nhất và x chia hết 15 và 18
=>x �ε BCNN ( 15;18)
15=3.5
18=2.32
=>BCNN(15;18)=32 . 5.2=90
Vậy x=90
Ta có:
\(2023^{2022}=2023\cdot2023^{2021}\)
\(2022^{2022}+2022^{2021}=2022^{2021}\cdot\left(2022+1\right)=2023\cdot2022^{2021}\)
Mà: \(2023>2022\)
\(\Rightarrow2023^{2021}>2022^{2021}\)
\(\Rightarrow2023^{2021}\cdot2023>2022^{2021}\cdot2023\)
\(\Rightarrow2023^{2022}>2022^{2022}+2022^{2021}\)
Vậy: ...