Tìm tham số m để đường thẳng y=(m-1)x+2018 có hệ số góc bằng 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b,c,d là các số dương, ta có :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d};\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d};\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Cộng 4 bất đẳng thức trên, ta đc :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)(1)
Lại có :
\(\frac{a}{a+b+c}< \frac{a}{a+c};\frac{c}{c+d+a}< \frac{c}{a+c}\Rightarrow\frac{a}{a+b+c}+\frac{c}{a+d+a}< 1\)(2)
\(\frac{b}{b+c+d}< \frac{b}{b+d};\frac{d}{d+a+b}< \frac{d}{b+d}\Rightarrow\frac{b}{b+c+d}+\frac{d}{d+a+b}< 1\)(3)
(1),(2),(3) => đpcm
cái này nhân trên tử một lượng giống hệt mẫu là ra hằng đẳng thức e nhé
Từ \(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)
\(\Leftrightarrow\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\left(\sqrt{x^2+3}-x\right)\)
\(\Leftrightarrow y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
Tương tự \(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)
Cộng theo vế ta có: \(2\left(x+y\right)=0\)
\(\Leftrightarrow E=0\)
\(\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2-3}\right)\)
\(\Leftrightarrow\left(x^2-x^2+3\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+3}=x-\sqrt{x^2+3}\) (1)
Tương tự \(x+\sqrt{x^2+3}=y-\sqrt{y^2+3}\) (2)
Từ (1) và (2)\(\Rightarrow x+y=0\)
em vào đây để xem câu trả lời :(