(3\(\sqrt{2}\)\(\)+2\(\sqrt{3}\))2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l} 2{x^2} - 11x + 21 - 3\sqrt[3]{{4x - 4}} = 0 \\ <=> 2{x^2} - 8x + 6 - 3x + 9 + 6 - 3\sqrt[3]{{4x - 4}} \\ <=> \left( {x - 3} \right)\left( {x - 1} \right) - 3\left( {x - 3} \right) - \frac{{108\left( {x - 3} \right)}}{{36 + 18\sqrt[3]{{4x - 4}} + 9\sqrt[3]{{{{\left( {4x - 4} \right)}^2}}}}} = 0 \\ <=> \left( {x - 3} \right)\left[ {x - 4 - \frac{{108}}{{36 + 18\sqrt[3]{{4x - 4}} + 9\sqrt[3]{{{{\left( {4x - 4} \right)}^2}}}}}} \right] = 0 \\ <=> x = 3 \\ \end{array} \)
_Học tốt_
\(\begin{array}{l} 2{x^2} - 11x + 21 - 3\sqrt[3]{{4x - 4}} = 0 \\ <=> 2{x^2} - 8x + 6 - 3x + 9 + 6 - 3\sqrt[3]{{4x - 4}} \\ <=> \left( {x - 3} \right)\left( {x - 1} \right) - 3\left( {x - 3} \right) - \frac{{108\left( {x - 3} \right)}}{{36 + 18\sqrt[3]{{4x - 4}} + 9\sqrt[3]{{{{\left( {4x - 4} \right)}^2}}}}} = 0 \\ <=> \left( {x - 3} \right)\left[ {x - 4 - \frac{{108}}{{36 + 18\sqrt[3]{{4x - 4}} + 9\sqrt[3]{{{{\left( {4x - 4} \right)}^2}}}}}} \right] = 0 \\ <=> x = 3 \\ \end{array}\)
\(a.\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\sqrt{2+\sqrt{3}}.\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3+1}\right)^2}\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)^2=\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\left(2^2-\sqrt{3}^2\right)=2\)
\(1.A=x-3\sqrt{x}+5=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) Điều kiện: \(x\ge0\)
\(\Rightarrow MinA=\frac{11}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TM\right)\)
\(2.B=\left(x-2015\right)-\sqrt{x-2015}+2015=\left(\sqrt{x-2015}-\frac{1}{2}\right)^2+2015-\frac{1}{4}\) điều kiện: \(x\ge2015\)
\(B\ge2015-\frac{1}{4}=\frac{8059}{8060}\)
Dấu "=" xảy ra khi \(\sqrt{x-2015}-\frac{1}{2}=0\Leftrightarrow x-2015=\frac{1}{2^2}\Leftrightarrow x=\frac{8061}{8060}\left(TM\right)\)
mk chỉ dải tóm tắt thôi có gì ko hiểu bạn nhắn tin cho mk cùng
https://olm.vn/hoi-dap/detail/189938041517.html
ý 2 phần b mk cũng chưa làm đc
a, ta có Cos C=\(\frac{CF}{EC}\)
C/m tam giác CEF đồng dạng với tam giác CBA (g-g)
=> \(\frac{CF}{EC}=\frac{AC}{BC}\)
=> tam giác AFC và tam giác BEC dồng dạng (c-g-c)
=>\(\frac{CF}{EC}=\frac{AF}{AE}\)
=> Cos C =\(\frac{AF}{BE}\)=> BE.Cos C= BE.\(\frac{AF}{BE}\)=AF(đpcm)
b,
bn áp dụng các hệ thức về góc và cạnh trong tam giác vuông
mỗi cạnh góc vuông bằng cạnh huyền.Sin góc đối để tính AB,AC trong tam giác ABC vuông
=> AE=EC=AC:2=...(bn tu tinh nha)
xét tam giác CEF vuông tại C
lại áp dụng công thức trên để tính È
=> FC=....(Theo Pi-ta-go)
=>BF=BC-FC
=>BF=....
=>bn tính SABE VÀ SBEF sau đó cộng lại là ra SABFE
- NẾU CÓ BN NÀO GIẢI ĐƯỢC CÂU B PHẦN 2 THÌ GIÚP MK VS
- *****CHÚC BẠN HỌC GIỎI*****