K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

a,

Ta có: \(a\left(b+1\right)b\left(a+1\right)=\left(a+1\right)\left(b+1\right)\)

\(\Rightarrow ab=\left(a+1\right)\left(b+1\right):\left(a+1\right)\left(b+1\right)=1\)

=>đpcm

b,

Ta có: \(2\left(a+1\right)\left(a+b\right)=\left(a+b\right)\left(a+b+2\right)\)

\(\Rightarrow2a+2=a+b+2\)

\(\Rightarrow a-b=0\)

\(\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2+b^2=2\) (đpcm)

15 tháng 8 2019

\(\left|x^2-9\right|=\left|-7\right|\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-9=7\\x^2-9=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=16\\x^2=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\pm4\\x=\pm\sqrt{2}\end{cases}}\)

19 tháng 8 2020

x2 + 6x - 16 > 2x - 7

<=> x2 + 6x - 2x > -7 + 16

<=> x2 + 4x > 9

<=> x2 + 4x + 4 > 9 + 4

<=> ( x + 2 )2 > 13

<=> ( x + 2 )2 > \(\left(\pm\sqrt{13}\right)^2\)

<=> \(\orbr{\begin{cases}x+2>\sqrt{13}\\x+2>-\sqrt{13}\end{cases}\Rightarrow}\orbr{\begin{cases}x>\sqrt{13}-2\\x>-2-\sqrt{13}\end{cases}}\)

15 tháng 8 2019

=x(x+1)

15 tháng 8 2019

\(=\left(x+1\right)-\left(x^2+1\right)\)

\(=x+1-x^2+1\)

\(=x-x^2\)

15 tháng 8 2019

\(x^3+6x^2+12x+8=\left(x-2\right)^3\)

cái thứ 2 số xấu quá

15 tháng 8 2019

Mik nghĩ đề câu sau là thek này:

\(x^3+6x^2+3x+1\)

\(=\left(x+1\right)\left(x^2+x+1\right)+6x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+7x+1\right)\)

15 tháng 8 2019

\(x^3-x+y^3-y=x^3+y^3-x-y=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

\(x^2-x-y^2-y=x^2-y^2-x-y=\left(x+y\right)\left(x-y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)

15 tháng 8 2019

Không có x thỏa mãn nha bạn

16 tháng 8 2019

\(\frac{1}{16x^2-x+4}=0\)

\(1=0\)

=> phương trình vô nghiệm

15 tháng 8 2019

Đề có sai ko bạn ?

15 tháng 8 2019

Ta có: \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)(1)

theo đề bài:

\(a^2+b^2+ab+bc+ac< 0\)

=> \(2\left(a^2+b^2+ab+bc+ac\right)< 0\)

=> \(2a^2+2b^2+2ab+2bc+2ac< 0\)(2)

Từ (1); (2) =>\(2a^2+2b^2+2ab+2bc+2ac< \) \(a^2+b^2+c^2+2ab+2bc+2ac\)

=> \(a^2+b^2< c^2\)

15 tháng 8 2019

\(\frac{1}{xy^2}+\frac{1}{x^2y}\)

\(=\frac{x^2y+xy^2}{x^3y^3}\)

\(=\frac{x+y}{x^2y^2}\)