K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

bn có nick bingbe ko

17 tháng 8 2019

Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=2^{64}-1\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

17 tháng 8 2019

Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)=2^{64}-1\)

Thay 264 - 1 vào B, ta được :

\(2^{64}-1-2^{64}=-1\)

17 tháng 8 2019

a) \(x^7+x^5+x^4+x^3+x^2+1\)

\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)

\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)

\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)

17 tháng 8 2019

a, -2x>15  x>-15/2            c, th1 x+2>0 vs x+3 <0 suy ra x>-2 vs x<-3     . th2 x+2<0,x+3>0 suy ra x<-2 ,x>-3

b, 112-x2>0

x2<112 x<11

17 tháng 8 2019

a) \(3x-8>5x+7\)

\(\Leftrightarrow-8>5x+7-3x\)

\(\Leftrightarrow-8>2x+7\)

\(\Leftrightarrow-8-7>2x\)

\(\Leftrightarrow-15>2x\)

\(\Leftrightarrow-\frac{15}{2}>x\)

\(\Rightarrow x< -\frac{15}{2}\)

b) \(\left(11-x\right)\left(11+x\right)>0\)

\(\Leftrightarrow x=\pm11\)

\(\Rightarrow-11< x< 11\)

c) \(\left(x+2\right)\left(x+3\right)< 0\)

\(\Leftrightarrow x=-2;-3\)

\(\Rightarrow-3< x< -2\)

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

17 tháng 8 2019

\(B=3xy-8y-15x+40\)

\(=y\left(3x-8\right)-5\left(3x-8\right)\)

\(=\left(3x-8\right)\left(y-5\right)\)

Thay x=1999 và y=5 vào B ta được :

\(B=\left(3.1999-8\right)\left(5-5\right)\)

\(=0\)

17 tháng 8 2019

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

17 tháng 8 2019

\(a^2-6a+5=\left(a^2-5a\right)-\left(a-5\right)=a\left(a-5\right)-\left(a-5\right)=\left(a-1\right)\left(a-5\right)\) 

\(a^2-7a+12=\left(a^2-3a\right)-\left(4a-12\right)=a\left(a-3\right)-4\left(a-3\right)=\left(a-4\right)\left(a-3\right)\) 

\(4a^2+4a-3=4a^2-2a+\left(6a-3\right)=2a\left(2a-1\right)+3\left(2a-1\right)=\left(2a+3\right)\left(2a-1\right)\)

X2 - 6x + 5

= x2 - 6x + 5 + 4 - 4 

= x2 - 6x + 9 - 22

= ( x - 3 )2 - 22 

= ( x - 3 - 2 ) ( x - 3 + 2 ) 

17 tháng 8 2019

2 bao gạo cân nặng 237 kg nếu gấp bao thứ nhất lên 3 lần gấp bao thứ 2 lên 2 lần thì được 611 hỏi mỗi bao gạo cân nặng bao nhiêu kg

17 tháng 8 2019

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3\left(a^2b+b^2a\right)-3abc+c^3\) 

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\) 

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Ta có : \(P=a+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Mặt khác \(\frac{x}{y}+\frac{y}{x}\ge2\)Với mọi \(x,y\)dương \(\Rightarrow P=3+2+2+2=9\)

Vậy \(Pmir=9\)khi \(a=b=c\)