CM :\(tan^2A+cot^2A=\left(\frac{1}{sinA}\right)^2+\left(\frac{1}{cosA}\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(a\ne1;b\ne2;c\ne3\)
Đặt \(\frac{1}{a-1}=x;\frac{1}{b-2}=y;\frac{1}{c-3}=z\). Khi đó hệ phương trình đã cho tương đương:
\(\hept{\begin{cases}x+y+z=1\\x^2-2yz=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y-z\\\left(1-y-z\right)^2-2yz=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y-z\\y^2+z^2+1+2yz-2y-2z-2yz=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y-z\\y^2+z^2-2y-2z+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1-y-z\\\left(y-1\right)^2+\left(z-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\\z=1\end{cases}}\).
Dễ thây \(y^{2018}=\left(2k+1\right)^2\)
\(\Rightarrow2012.x^{2015}+2013.y^{2018}=2012.x^{2015}+2013.\left(2k+1\right)^2\equiv1\left(mod4\right)\)
Mà \(2015\equiv3\left(mod4\right)\)
Nên vô nghiệm nguyên
\(\left(4x^2-4xy+y^2\right)+\left(y^2-2yz+z^2\right)+2\left(y-z\right)+1+\left(z^2-6z+9\right)\le0\)
\(\left(2x-y\right)^2+\left(y-z+1\right)^2+\left(z-3\right)^2\le0\)
\(\Leftrightarrow x=1;y=2;z=3\)
\(2005^n\equiv1\left(mod167\right)\)
\(1897^n\equiv60^n\left(mod167\right)\)
\(168^n\equiv1\left(mod167\right)\)
\(\Rightarrow A\equiv1+60^n-60^n-1\equiv0\left(mod167\right)\)
\(\Rightarrow A⋮167\)
Tương tụ ta co:
\(\hept{\begin{cases}A⋮4\\A⋮3\end{cases}}\)
\(\Rightarrow A⋮2004\)
VP=\(\left(\frac{1}{sinA}\right)^2+\left(\frac{1}{cosA}\right)^2=\)\(\frac{1}{sin^2A}+\frac{1}{cos^2A}=cos^2A\cdot\frac{1}{sin^2A}+sin^2A\cdot\frac{1}{cos^2A}=\)\(\frac{cos^2A}{sin^2A}+\frac{sin^2A}{cos^2A}=cot^2A+tan^2A=tan^2A+cot^2A\)=VT(dpcm)
Đừng chơi giọng chó kiểu tự ra câu hỏi tự trả lời nha thằng bạn thân
Chơi kiểu đó kiếm điểm hỏi đáp à
Never nha thằng bạn thân
đừng có k nó nha
Thay mặt nó cho xin lỗi mọi người
Xin cảm ơn
:) :)