K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

\(P=\frac{1}{xy-xyz-z}+\frac{1}{yz-xyz-x}+\frac{1}{xz-xzy-y}\)  .Do xyz=-z =>-xyz=1 và x+y+z=0 . Thế vào P ta được \(P=\frac{1}{xy+1+x+y}+\frac{1}{yz+1+y+z}+\frac{1}{xz+1+x+z}\)\(P=\frac{1}{\left(x+1\right)\left(y+1\right)}+\frac{1}{\left(y+1\right)\left(z+1\right)}+\frac{1}{\left(x+1\right)\left(z+1\right)}\) =\(\frac{z+1+x+1+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\) 

\(P=\frac{3}{xyz+z+xz+yz+xy+1+x+y}\) =\(\frac{3}{xy+yz+xz}\) (Do x+y+z=0; xyz=-1)

x+y+z=0 => (x+y+z)2=0 => x2+y2+z+2(xy+yz+xz)=0 => 2(xy+yz+xz)=-6 => xy+yz+xz=-3 Thế vào P ta được :

\(P=\frac{3}{-3}=-1\) . Chúc bạn học tốt

21 tháng 9 2018

Hình như bạn ghi thiếu đề r . Còn xyz=-1 nữa 

20 tháng 9 2018

\(3xy-1=x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+1\right)\ge0\)

\(\Leftrightarrow\sqrt{xy}\ge1\Leftrightarrow xy\ge1\)

Và \(xy+x+y+1=4xy\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4xy\)

Ta có: \(\frac{3x}{y\left(x+1\right)}-\frac{1}{y^2}=\frac{3xy-x-1}{y^2\left(x+1\right)}=\frac{y}{y^2\left(x+1\right)}=\frac{1}{y\left(x+1\right)}\)

\(M=\frac{1}{y\left(x+1\right)}+\frac{1}{x\left(y+1\right)}=\frac{2xy+x+y}{4x^2y^2}=5xy-1\)

Xét hàm số \(f\left(t\right)=\frac{20t^2-8t\left(5t-1\right)}{16t^4}=\frac{8t-20t^2}{16t^4}\le0\) 

Nên hàm số nghịch biến với \(t\ge1\)

\(\Rightarrow f\left(t\right)_{Max}=f\left(1\right)=1\Leftrightarrow M_{Max}=1\)

23 tháng 10 2018

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\Rightarrow a+b+ab=3\)

Ta có:\(3=a+b+ab\ge3\sqrt[3]{a^2b^2}\Rightarrow ab\le1\)

Suy ra

\(M=\frac{ab}{a+1}+\frac{ab}{b+1}=ab\left(\frac{a+1+b+1}{ab+a+b+1}\right)=\frac{ab.\left(5-ab\right)}{4}=\frac{-\left[\left(ab\right)^2-2ab+1\right]+3ab+1}{4}=\frac{-\left(ab-1\right)^2+3ab+1}{4}\le1\)Dấu bằng xảy ra khi a=b=1

20 tháng 9 2018

\(\frac{\sqrt{a}-4}{\sqrt{a}-2}< 2\)

\(\Leftrightarrow\)\(\frac{\sqrt{a}-2}{\sqrt{a}-2}-\frac{2}{\sqrt{a}-2}< 2\)

\(\Leftrightarrow\)\(1-\frac{2}{\sqrt{a}-2}< 2\)

\(\Leftrightarrow\)\(\frac{2}{\sqrt{a}-2}>1\)

\(\Leftrightarrow\)\(2:\frac{2}{\sqrt{a}-2}< 2:1\)

\(\Leftrightarrow\)\(\sqrt{a}-2< 2\)

\(\Leftrightarrow\)\(\sqrt{a}< 4\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}a< 4^2=16\\a>-4^2=-16\end{cases}}\)

Vậy để \(H< 2\) thì \(a< 16\) hoặc \(a>-16\)

Chúc bạn học tốt ~ 

25 tháng 11 2020

- Giả sử cạnh huyền BC > AB 1 cm , ta có :

BC - AB = 1

( AB + AC ) - BC = 4 cm

=> AC = 5cm

Ta có : \(\hept{\begin{cases}BC-AB=1\\BC^2=AB^2+AC^2\end{cases}}\)( đlí Py - ta - go )

BC - AB = 1 => BC = AB + 1

( AB + 1 )2 = AB2 + AC2

AB2 + 2AB + 1 = AB2 + AC2

          2AB + 1 = AC2

          2AB = AC2 - 1 = 52 - 1 = 24

\(\Rightarrow AB=\frac{24}{2}=12\Rightarrow BC=12+1=13\)

Vậy : AB = 12cm

         AC = 5cm

         BC = 13cm

20 tháng 9 2018

(x+5)(y+6)=3xy

xy + 5x + 6y + 30= 3xy

5x + 6y + 30 -2xy = 0

x(5 - 2y) - 3.(5-2y) + 45 = 0

(x - 3)(5 - 2y) = -45

Suy ra (5 - 2y) là các ước của -45: {-1,1, -3, 3, -9,9, -15, 15, -45, 45}

Đến đây bạn xét từng trường hợp là ra nhé ^^