phan tich da thuc sau thanh nhan tu
xy+3x-3y-7=0
mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tạm kí hiệu đồng dư là \(\exists\)
Với a2+b2+c2 chẵn hiển nhiên có điều phải chứng minh
Với a2+b2+c2 lẻ, xét 2 trường hợp
TH1: trong 3 số a,b,c có 1 số lẻ, 2 số chẵn giả sử số lẻ là a
Ta có a2\(\exists\)1(mod 8), do đó để a2+b2+c2\(\exists\)7(mod 8) thì b2+c2\(\exists\)(mod 8)
Vì b,c chẵn nên ta đặt b=2m,c=2n =>4(m2+n2)\(\exists\)6(mod 8)<=>4m2+4n2-6 chia hết cho 8
<=>2(2m2+2n2-3) chia hết cho 8<=>2m2+2n2-3 chia hết cho 4 (chỗ nãy không biết có đúng không) (1)
Ta thấy (1) không thể xảy ra do 2m2+2n2-3 là số lẻ
TH2:a,b,c là 3 số lẻ
Ta có ngay a2\(\exists\)1(mod 8),b2\(\exists\)1(mod 8),c2\(\exists\)1(mod 8)
=>a2+b2+c2\(\exists\)3 (mod 8)
Nói tóm lại a2+b2+c2 không thể đồng dư với 7 modulo 8
theo mk thì cần thêm đk nữa là a;b;c thuộc Z
a) (2x - 1)(3x + 1) + (3x + 4)(3 - 2x)
= 6x2 + 2x - 3x - 1 + 9x - 6x2 + 12 - 8x
= 11
b) x(2x2 - 3) - x2(5x + 1) + x2
= 2x3 - 3x - 5x3 - x2 + x2
= -3x2 - 3x
c) x(x2 + x + 1) - x2(x + 1) - x + 5
= x3 + x2 + x - x3 - x2 - x + 5
= 5
d) (x - 2)(x + 1) - (x + 2)(x - 3)
= x2 + x - 2x - 2 - x2 + 3x - 2x + 6
= 4
e) (2x - y)(2x + y) + y2
= 4x2 - y2 + y2
= 4x2
Thay x = 5 vào biểu thức trên, ta có:
4x2 = 4.52= 100
=>5.(25.2-29)-2.5.(29-5)
=>5.21-10.24
=>105-240
=-135
\(xy+3x-3y-7=0\)
\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)+2=0\)
\(\Leftrightarrow\left(y-3\right)\left(x-3\right)=-2\)
timf noot