Cho x, y là các số thực dương thỏa mãn x + \(\dfrac{1}{y}\) = 1. Tìm GTNN của P = \(\dfrac{x}{y}+\dfrac{y}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,5x^3y-10x^2y^2\\=5x^2y(x-2y)\\b,x^4-y^4\\=(x^2)^2-(y^2)^2\\=(x^2-y^2)(x^2+y^2)\\=(x-y)(x+y)(x^2+y^2)\)
\(c,(x+5)^2-16\\=(x+5)^2-4^2\\=(x+5-4)(x+5+4)\\=(x+1)(x+9)\\d,7x(y-3)-14(3-y)\\=7x(y-3)+14(y-3)\\=(7x+14)(y-3)\\=7(x+2)(y-3)\\Toru\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Số quả dừa loại to bán được là (số bé): (450 - 150) : 2 = 150 (quả)
Số quả dừa loại bé bán được là (số lớn): 450 - 150 = 300 (quả)
Đúng thì tick cho mình nha! Chúc bạn học tốt.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Chiều dài khu vườn hình chữ nhật của nhà Lan là:
360 : 12 = 30 (m)
b, Chu vi mảnh vườn hình chữ nhật là:
(30 + 12) x 2 = 84 (m)
Để rào mảnh vườn theo yêu cầu thì Lan cần mua số mét lưới là:
84 - 2 = 82 (m)
Kết luận: Chiều dài khu vườn là 30 m
Số mét lưới Lan cần mua để rào khu vườn là 82 m
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi số tự nhiên thỏa mãn đề bài là A thì:
A = (p1)\(x\).(p2)y.(p3)z....... ( p1; p2; .....pn \(\in\) P; \(x\);y;...; ≥ 1)
Vì A có 8 ước; 8 = 23 nên A có dạng:
\(\left[{}\begin{matrix}A=\left(p_1\right)^x.\left(p_2\right)^y.\left(p_3\right)^z\\A=\left(p_1\right)^x.\left(p_2\right)^y\end{matrix}\right.\)
Để A nhỏ nhất thì p1;p2; p3 phải nhỏ nhất vậy:
p1 = 2; p2 = 3; p3 = 5
Xét trường hợp A = 2\(x\).3y.5\(z\)
Theo bài ra ta có: (\(x\) + 1.).(y + 1).(z + 1) = 8
vì 8 = 1.2.4 = 2.2.2 và \(x\); y ; z ≥ 1
nên \(\left\{{}\begin{matrix}x+1=2\\y+1=2\\z+1=2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\) ⇒ A = 2.3.5 = 30 (1)
Xét trường hợp A = 2\(x\).3y
Theo bài ra ta có: (\(x\) + 1).(y + 1) = 8
8 = 23 ⇒Ư(8) = {1; 2; 4; 8}
Lập bảng ta có:
\(x\) + 1 | 1 | 2 | 4 | 8 |
\(x\) | 0 (loại) | 1 | 3 | 7 |
y + 1 | 8 | 4 | 2 | 1 |
y | 3 | 1 | 0 (loại) | |
A = 2\(x\).3y | 54 | 24 |
A = 24; 54 (2)
Kết hợp (1) và (2) ta có:
A = 24; 30; 54
Mà A là số tự nhiên nhỏ nhất nên A = 24
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi ước chung lớn nhất của 65n + 6 và 78 n + 7 là d
Theo bài ra ta có: \(\left\{{}\begin{matrix}65n+6⋮d\\78n+7⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}6.\left(65n+6\right)⋮d\\5.\left(78n+7\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\)\(\left\{{}\begin{matrix}390n+36⋮d\\390n+35⋮d\end{matrix}\right.\)
⇒ 390n + 36 - (390n - 35) ⋮ d
⇒ 390n + 36- 390n - 35⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vậy \(\dfrac{65n+6}{78n+7}\) là phân số tối giản. (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:
\(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)
⇒ 4n + 6 - (4n + 3) ⋮ d ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d
⇒ d = 1; 3
Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì
2n + 3 không chia hết cho 3
2n không chia hết cho 3
n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)