K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

\(\frac{x^2}{4}-2\frac{x}{2}y+y^2=\frac{x^2}{4}-xy+y^2\)

Study well

\(\left(\frac{x}{2}\right)^2-2\cdot\frac{x}{2}.y+y^2\)

9 tháng 9 2019

\(\sqrt{a}.\sqrt{a}-\sqrt{b}\sqrt{b}-\sqrt{c}\sqrt{c}\)

\(=\sqrt{a^2}-\sqrt{b^2}-\sqrt{c^2}\)

\(=a-b-c\)

9 tháng 9 2019

\(x+y+z=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)\(=0\)

\(\Rightarrow2xy+2yz+2xz=-9\)

\(\Rightarrow xy+yz+xz=-\frac{9}{2}\)

\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz=\left(-\frac{9}{2}\right)^2=\frac{81}{4}\)\(\)

\(\Rightarrow x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)=\frac{81}{4}\)

\(\Rightarrow x^2y^2+y^2z^2+x^2z^2=\frac{81}{4}\)

\(\left(x^2+y^2+z^2\right)^2=9^2=81\)

\(\Rightarrow P=x^4+y^4+z^4=81-2\left(x^2y^2+y^2z^2+x^2z^2\right)=81-2.\frac{81}{4}=\frac{81}{2}\)

9 tháng 9 2019

C = ( a2 + b2 +1 )( a + b + 1 )2 + ( ab + a + b )2

   = (a2+b2+1)(a2+b2+1+2ab+2a+2b) +(ab+a+b)2

   =(a2+b2+1)2+ 2(a2+b2+1)(ab+a+b)+(ab+a+b)2

   =[(a2+b2+1)+(ab+a+b)]2

Vậy ta cm đc C là bình phương của 1 biểu thức.

9 tháng 9 2019

\(A=x^2-3x+1=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)

Vậy GTNN của A là \(\frac{-5}{4}\)\(\Leftrightarrow x=\frac{3}{2}\)

9 tháng 9 2019

\(C=10x-x^2+2=-\left(x^2-10x-2\right)\)

\(=-\left(x^2-10x+25-27\right)=-\left[\left(x-5\right)^2-27\right]\)

\(=-\left(x-5\right)^2+27\le27\)

Vậy \(C_{max}=27\Leftrightarrow x=5\)

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
9 tháng 9 2019

\(x\left(x-6\right)=x^2-6x+9-9=\left(x-3\right)^2-9\ge-9\)

Vậy GTNN của bt là -9\(\Leftrightarrow x=3\)

như ta đã biết (-).(-)=+

=>x lớn hơn hoặc =0

với x=0 thì giá trị nhỏ nhất của đa thức trên là

0.(0-6)=0