Cho số phức z1, z2 thỏa mãn \(|z_1+1-2i|\)=\(|iz_2+1-i|\)=1. Tìm GTLN của P=\(|3z_1+z_2-i|\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
6 tháng 5 2022
-Do bán kính hình tròn B gấp 3 lần bán kính hình tròn A, nên chu vi của hình tròn B cũng gấp 3 lần chu vi của hình tròn A.
- Mà mỗi khi lăn được 1 vòng, hình tròn A lại đi được một quãng đường bằng đúng chu vi của nó.
- Vậy để lăn xung quanh hình B, A phải thực hiện 3 vòng quay để quay lại điểm xuất phát.
\(1=\left|iz_2+1-i\right|=\left|i\right|.\left|iz_2+1-i\right|=\left|-z_2+i+1\right|\)
\(\left|z_1+1-2i\right|=1\Leftrightarrow\left|3z_1+3-6i\right|=3\)
Trên mặt phẳng tọa độ, số phức \(-z_2+i\) là tập hợp các điểm \(M\) thuộc đường tròn tâm \(I_1\left(-1,0\right)\) bán kính \(R_1=1\); số phức \(3z_1\) là tập hợp các điểm \(N\) thuộc đường tròn tâm \(I_2\left(-3,6\right)\) bán kính \(R_2=3\).
\(P=\left|3z_1+z_2-i\right|=\left|3z_1-\left(-z_2+i\right)\right|=MN\).
Ta có \(I_1I_2=2\sqrt{10}>4=R_1+R_2\) nên hai đường tròn \(\left(I_1\right)\) và \(\left(I_2\right)\) rời nhau do đó
\(maxP=maxMN=I_1I_2+R_1+R_2=4+2\sqrt{10}\).
1=|iz2+1−i|=|i|.|iz2+1−i|=|−z2+i+1|1=|iz2+1−i|=|i|.|iz2+1−i|=|−z2+i+1|
|z1+1−2i|=1⇔|3z1+3−6i|=3|z1+1−2i|=1⇔|3z1+3−6i|=3
Trên mặt phẳng tọa độ, số phức −z2+i−z2+i là tập hợp các điểm MM thuộc đường tròn tâm I1(−1,0)I1(−1,0) bán kính R1=1R1=1; số phức 3z13z1 là tập hợp các điểm NN thuộc đường tròn tâm I2(−3,6)I2(−3,6) bán kính R2=3R2=3.
P=|3z1+z2−i|=|3z1−(−z2+i)|=MNP=|3z1+z2−i|=|3z1−(−z2+i)|=MN.
Ta có I1I2=2√10>4=R1+R2I1I2=210>4=R1+R2 nên hai đường tròn (I1)(I1) và (I2)(I2) rời nhau do đó
maxP=maxMN=I1I2+R1+R2=4+2√10maxP=maxMN=I1I2+R1+R2=4+210.
Mik ko chắc nhưng mik nghĩ là đúng thả GP cho mik nha!!!