Tìm x, y, z, biết:
a) \(\dfrac{x}{5}\) = \(\dfrac{y}{6}\); \(\dfrac{7}{8}\)= \(\dfrac{z}{7}\); x + y - z = 69
b) 2x = 3y; 5y = 7z và 3x + 5z + 7y = 30
c) x : y : z = 2 : 7 : 5 và 5x - 2y = 24.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-y}{2x+y}=\dfrac{1}{3}\) \(\Rightarrow3\left(x-y\right)=2x+y\)
\(\Rightarrow3x-3y=2x+y\)
\(\Rightarrow x=4y\)
\(\Rightarrow T=\dfrac{x^2}{x^2+y^2}=\dfrac{\left(4y\right)^2}{\left(4y\right)^2+y^2}=\dfrac{16y^2}{16y^2+y^2}=\dfrac{16y^2}{17y^2}=\dfrac{16}{17}\)
(3\(x\) - 5)2006 + (y - 1)2008 + (\(x\) - 2z)2100 = 0
Vì (3\(x\) - 5)2006 ≥ 0; (y - 1)2008 ≥ 0; (\(x\) - 2z)2100 ≥ 0 ∀ \(x;y;z\)
Vậy (3\(x-5\))2006 + (y - 1)2008 + (\(x\) - 2z)2100 = 0
⇔ \(\left\{{}\begin{matrix}3x-5=0\\y-1=0\\x-2z=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=1\\z=\dfrac{x}{2}=\dfrac{5}{6}\end{matrix}\right.\)
Vậy...
\(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{y}=\dfrac{3}{2}\Rightarrow x=1,5y\)
\(2x+5y=32\)
\(2\times1,5y+5y=32\)
\(3y+5y=32\)
\(\left(3+5\right)y=32\)
\(8y=32\)
\(y=32:8=4\)
⇒ \(x=4\times\dfrac{3}{2}=6\)
Vậy \(x=6\) ; \(y=4\)
\(\dfrac{x}{3}\) = \(\dfrac{y}{4}\); \(\dfrac{y}{5}\) = \(\dfrac{z}{7}\); 2\(x\) + y - z = 372
\(x\) = \(\dfrac{y}{4}\).3; z = \(\dfrac{y}{5}\).7
Thay \(x\) = \(\dfrac{y}{4}\).3 và z = \(\dfrac{y}{5}\).7 vào biểu thức 2\(x\) + y - z = 372 ta có:
2.\(\dfrac{y}{4}\).3 + y - \(\dfrac{y}{5}\).7 = 372
y.( 2.\(\dfrac{1}{4}\).3 + 1 - \(\dfrac{7}{5}\)) = 372
y.\(\dfrac{11}{10}\) = 372
y = 372 : \(\dfrac{11}{10}\)
y = \(\dfrac{3720}{11}\)
\(x\) = \(\dfrac{\dfrac{3720}{11}}{4}\).3 = \(\dfrac{2790}{11}\)
z = \(\dfrac{\dfrac{3720}{11}}{5}\).7 = \(\dfrac{5208}{11}\)
Vậy (\(x;y;z\)) = (\(\dfrac{2790}{11}\); \(\dfrac{3720}{11}\); \(\dfrac{5208}{11}\))
theo đề bài ta có: x/y=4/7 => x= \(\dfrac{4}{7}y\)
Thay vào biểu thức x.y=112
=>\(\dfrac{4}{7}y^2\)=112
<=>\(y^2\)=112:\(\dfrac{4}{7}\)
<=>\(y^2\)=196
<=>\(\left[{}\begin{matrix}y=14\\y=-14\end{matrix}\right.\)
Với y=14 => x=\(\dfrac{4}{7}.14\)=\(8\)
VỚi y=-14 => x=\(\dfrac{4}{7}.\left(-14\right)\)=-8
a; \(\dfrac{x}{5}\) = \(\dfrac{y}{6}\); \(\dfrac{7}{8}\) = \(\dfrac{z}{7}\); \(x\) + y - z = 69
z = \(\dfrac{7}{8}\). 7 = \(\dfrac{49}{8}\); Thay z = \(\dfrac{49}{8}\) vào biểu thức \(x\) + y - z = 69 ta có:
\(x\) + y - \(\dfrac{49}{8}\) = 69 ⇒ \(x\) + y = 69 + \(\dfrac{49}{8}\) = \(\dfrac{601}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\) = \(\dfrac{y}{6}\) = \(\dfrac{x+y}{5+6}\) = \(\dfrac{\dfrac{601}{8}}{11}\) = \(\dfrac{601}{88}\)
\(x\) = \(\dfrac{601}{88}\) x 5 = \(\dfrac{3005}{88}\); y = \(\dfrac{601}{88}\) x 6 = \(\dfrac{1803}{44}\)
Vậy (\(x\); y; z) = (\(\dfrac{3005}{88}\);\(\dfrac{1803}{44}\);\(\dfrac{49}{8}\))
b; 2\(x\) = 3y; 5y = 7z; 3\(x\) + 5z + 7y = 30
2\(x\) = 3y ⇒ \(x\) = \(\dfrac{3}{2}\)y;5y = 7z ⇒ z = \(\dfrac{5}{7}\)y
thay \(x\) = \(\dfrac{3}{2}\)y; z = \(\dfrac{5}{7}\)y vào biểu thức 3\(x\) + 5z + 7y = 30 ta có:
3.\(\dfrac{3}{2}\)y + 5.\(\dfrac{5}{7}\)y + 7y = 30
y.(3.\(\dfrac{3}{2}\) + 5.\(\dfrac{5}{7}\) + 7) = 30
y.(\(\dfrac{9}{2}\) + \(\dfrac{25}{7}\) + 7) = 30
y.\(\dfrac{211}{14}\) = 30
y = 30 : \(\dfrac{211}{14}\)
y = \(\dfrac{420}{211}\); \(x\) = \(\dfrac{3}{2}\).\(\dfrac{420}{211}\) = \(\dfrac{630}{211}\); z = \(\dfrac{420}{211}\). \(\dfrac{5}{7}\) = \(\dfrac{300}{211}\)
Vậy...