Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của MA lấy điểm K sao cho MA=MK.C/m:
a. Tam giác AMC= tam giác KMB và AC // BK.
b. CK// AB. C/m thêm tam giác AMB=tam giác KMC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2.2+3.\left(-3\right)+5.5}=\dfrac{6}{20}=\dfrac{3}{10}\)
\(=>x=\dfrac{3}{10}.2=\dfrac{3}{5}\\ y=\dfrac{3}{10}.\left(-3\right)=-\dfrac{9}{10}\\ z=\dfrac{3}{10}.5=\dfrac{3}{2}\)
2\(^x\) - 512 = 2y
2\(^x\) - 29 = 2y
2\(^9\).(2\(^{x-9}\) - 1) = 2y
2y = 29
⇒ y = 9
2\(x-9\) - 1 = 1
2\(^{x-9}\) = 1 + 1
2\(^{x-9}\) = 2
2\(^{x-9}\) = 21
\(x-9\) = 1
\(x\) = 1 + 9
\(x\) = 10
Nếu \(x\) = 9 ⇒ 2\(^9\).(20 - 1) = 0 ≠ 2y ∀ y \(\in\) N
Nếu \(x< 9\) ⇒ 2\(^x\) < 29 < 512 ⇒ 2\(^x\) - 512 < 512 - 512 = 0 (loại)
Nếu \(x\) > 10 thì 2\(^{x-9}\) là số chẵn
⇒2\(^{x-9}\) - 1 là số lẻ ⇒ 29.(2\(^{x-9}\) - 1) ≠ 29 ∀ \(x;y\in N\)
Vậy \(x=10;y=9\)
Lời giải:
a. Xét tam giác $AMC$ và $KMB$ có:
$MC=MB$ (do $M$ là trung điểm $BC$)
$AM=KM$ (gt)
$\widehat{AMC}=\widehat{KMB}$ (đối đỉnh)
$\Rightarrow \triangle AMC=\triangle KMB$ (c.g.c)
và $\widehat{ACM}=\widehat{KBM}$
Mà 2 góc này ở vị trí so le trong nên $AC\parallel BK$
b.
Xét tam giác $ABM$ và $KCM$ có:
$BM=CM$
$AM=KM$
$\widehat{AMB}=\widehat{KMC}$ (đối đỉnh)
$\Rightarrow \triangle ABM=\triangle KCM$ (c.g.c)
$\Rightarrow \widehat{ABM}=\widehat{KCM}$
Mà 2 góc này ở vị trí so le trong nên $AB\parallel CK$
Hình vẽ: