Cho hàm số \(f\left(x\right)=ã+b\left(a\ne0\right)\)
Hàm số trên đồng biến hay nghịch biến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\frac{5}{1+\sqrt{6}}\)
\(\Rightarrow\frac{\sqrt{9}.\sqrt{2}-\sqrt{4}.\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\frac{5}{1+\sqrt{6}}\)
\(\Rightarrow\frac{(\sqrt{3}-\sqrt{2})\sqrt{6^2}}{\sqrt{3}-\sqrt{2}}-\frac{5}{1+\sqrt{6}}\)
\(\Rightarrow\sqrt{6}-\frac{5}{1+\sqrt{6}}\)
\(\Rightarrow\frac{6+6\sqrt{6}-5}{1+\sqrt{6}}\)
\(\Rightarrow\frac{1+6\sqrt{6}}{1+\sqrt{6}}\)
A B C H K O D E F P Q
a) +) Gọi P và Q lần lượt là hình chiếu của O trên các đường thẳng AB và AC.
Tứ giác AHKO là hình chữ nhật => OA // HK hay OA // BC => ^FAO = ^ABC; ^EAO = ^ACB
Mà ^ABC = ^ACB = 450 => ^FAO = ^EAO = 450. Do đó: AO là tia phân giác ^EAF
Xét góc EAF: AO là phân giác ^EAF; OP vuông góc AF; OQ vuông góc AE
=> AP = AQ và OP = OQ (T/c điểm nằm trên đường phân giác)
Xét \(\Delta\)OQE và \(\Delta\)OPF có: ^OQE = ^OPF (=900); OQ = OP; OE = OF
=> \(\Delta\)OQE = \(\Delta\)OPF (Cạnh huyền, cạnh góc vuông) => QE = PF (2 cạnh tương ứng)
Ta có: AQ = AP; QE = PF (cmt) => AQ + QE = AP + PF => AE =AF
Xét \(\Delta\)AEF: ^EAF = 900; AE = AF (cmt) => \(\Delta\)AEF vuông cân tại A (đpcm)
+) Ta thấy \(\Delta\)AEF vuông cân ở A (cmt) => ^AFE = 450 hay ^DFE = 450
Xét (O) có: ^DFE là góc nội tiếp đường tròn (O)
=> \(\widehat{DFE}=\frac{1}{2}.sđ\widebat{DE}\)=> ^DOE = 2.^DFE = 900 => DO vuông góc OE (đpcm).
b) Xét tứ giác DAOE có: ^DAE = ^DOE (=900) => Tứ giác DAOE nội tiếp đường tròn (DE)
hay 4 điểm D;A;O;E cùng nằm trên 1 đường tròn (đpcm).
A B H C 45 30 o o
Vẽ đường cao AH . Đặt BH = x, CH = y thì do H nằm giữa B và C ( hai góc \(\widehat{B } ; \widehat{C}\) là góc nhọn) suy ra x + y = 4
Ta có \(BH=AH=HC.tg30^o\)nên \(x-y.tg30^o=y\sqrt{3}\)
\(\Rightarrow x=\frac{4}{1+\sqrt{3}}\approx1,46\left(cm\right)\)
Vậy \(AB=\frac{AH}{\sin45^o}=\frac{2AH}{\sqrt{2}}\approx2,06\left(cm\right)\)
\(AC=2AH\approx1,46.2=2,92\left(cm\right)\)
AC = 2AH ≈ 1,46. 2 = 2,92 ( cm )
Dễ xét 2 Trường hợp là ok :))))
Ta có: \(f\left(x\right)=ã+b\left(a\ne0\right)\left(x\in R\right)\)
TH1: Khi a > 0
* Cho x1 < x2
\(\Leftrightarrow ax_{ }_1< ax_2\)\(\Leftrightarrow ax_1+b< ax_2+b\)
\(\Leftrightarrow f\left(x_1\right)< f\left(x_2\right)\)
TH2: Khi a < 0
* Cho x1 < x2
\(\Leftrightarrow ax_1>ax_2\Leftrightarrow ax_1+b>ax_2+b\)
\(\Leftrightarrow f\left(x_1\right)>f\left(x_2\right)\)
Vậy hàm số trên đồng biến khi a > 0 với mọi \(x\in R\)
Nghịch biến khi a < 0 với mọi \(x\in R\)