Cho 3 số thực dương a, b, c thỏa mãn a+b+c=\(\sqrt{3}\)
Chứng minh rằng \(\frac{a}{\sqrt{a^2}+1}+\frac{b}{\sqrt{b^2}+1}+\frac{c}{\sqrt{c^2}+1}\le\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{3x^2+x+2}=a\)
\(a^2+4x^2+x^2-4x+4\)=4ax <=> \(\left(a^2-4ax+4x^2\right)+\left(x^2-4x+4\right)\)=0 <=>(a-2x)2+(x-2)2=0
=>a=2x và x=2 đồng thởi xảy ra (1)
với x=2 =>a=\(\sqrt{3.4+2+2}\)=4=2x
vậy x=2 thỏa mãn điều kiện (1) =>pt co nghiệm duy nhất x=2
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(=\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a-a-b-c\)
\(\ge2\sqrt{\frac{a^2b}{b}}+2\sqrt{\frac{b^2c}{c}}+2\sqrt{\frac{c^2a}{a}}-a-b-c\)
\(=2a+2b+2c-a-b-c=a+b+c\)
Dấu '=' xảy ra khi a=b=c
Áp dụng BĐT Cauchy-Schwarz dạng Engle ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(đpcm\right)\)
\(64-x^2-y^2+xy=64-\left(x^2-xy+y^2\right)\)
= \(8^2-\left(x-y\right)^2\)
=(8-x+y)(8+x-y)
a) \(x^2+7x+7y-y^2\)
\(=\left(x+y\right)\left(x-y\right)+7\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+7\right)\)
b) \(x^2-xy-6y^2\)
\(=-6y^2-3xy+2xy+x^2\)
\(=-3y\left(2y+x\right)+x\left(2y+x\right)\)
\(=\left(x-3y\right)\left(2y+x\right)\)
c) \(x^2-3x^2-6x+8\)
\(=\left(x+2\right)\left(x^2-2x+4\right)-3x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-5x+4\right)\)
\(=\left(x+2\right)\left(x^2-4x-x+4\right)\)
\(=\left(x+2\right)\left[x\left(x-4\right)-\left(x-4\right)\right]\)
\(=\left(x+2\right)\left(x-1\right)\left(x-4\right)\)
a)x2+7x+7y-y2=(x-y)(x+y)+7.(x+y)
=(x+y)(x-y+7)
b)x2-xy-6y2=x2-xy-4y2-2y2
=(x-2y)(x+2y)-y(x-2y)
=(x-2y)(x+2y-y)
Vì a,b,c là số thực dương nên \(\sqrt{a^2}=a;\sqrt{b^2}=b;\sqrt{c^2}\)=c. Vậy ta có
\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)=\(\frac{a}{a+1}-1+\frac{b}{b+1}-1\)+\(\frac{c}{c+1}-1+3\)
=3-( \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)) =A
ta có bdt \(9\le\left(a+1+b+1+c+1\right)\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)(dễ dàng chứng mình bằng bdt cosi).
=>\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\)\(\frac{9}{3+\sqrt{3}}\)=> A\(\le3-\frac{9}{3+\sqrt{3}}=\frac{3\sqrt{3}}{3+\sqrt{3}}=\frac{3}{\sqrt{3}+1}\)
dấu = khi a=b=c=\(\frac{\sqrt{3}}{3}\)