cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K
a, CM AD=HD
b, So sánh AD VÀ DC
c, CM TAM GIÁC ABC Cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét ΔABE và ΔHBE, ta có
:
( BE là đường phân giác BE).
BE là cạnh chung.
=> ΔABE = ΔHBE
b)
BA =BH và EA = EH (ΔABE = ΔHBE)
=> BE là đường trung trực của AH .
c)
Xét ΔKAE và ΔCHE, ta có :
(gt)
EA = EH (cmt)
( đối đỉnh).
=> ΔKAE =ΔCHE
=> EK = EC(hai cạnh tuong ứng)
d)
Xét ΔKAE vuông tại A, ta có :
KE > AE (KE là cạnh huyền)
Mà : EK = EC (cmt)
=> EC > AC.
\(A=\left|x-1\right|+\left|x-2\right|+...+\left|x-2015\right|\)
\(=\left|x-1\right|+\left|x-2015\right|+\left|x-2\right|+\left|x-2014\right|+...+\left|x-1007\right|+\left|x-1009\right|+\left|x-1008\right|\)
\(=\left|x-1\right|+\left|2015-x\right|+\left|x-2\right|+\left|2014-x\right|+...+\left|x-1007\right|+\left|1009-x\right|+\left|x-1008\right|\)
Ta có : \(\left|x\right|+\left|y\right|\ge\left|x+y\right|;"="\Leftrightarrow xy\ge0\)
\(\Rightarrow A=\left|x-1\right|+\left|2015-x\right|+\left|x-2\right|+\left|2014-x\right|+...+\left|x-1007\right|+\left|1009-x\right|+\left|x-1008\right|\)\(\ge\left|x-1+2015-x\right|+\left|x-2+2014-x\right|+...+\left|x-1007+1009-x\right|+\left|x-1008\right|\)
Lại do \(\left|x-1008\right|\ge0;"="\Leftrightarrow x=1008\)
\(\Rightarrow A\ge2014+2012+...+2=\frac{\left(2014+2\right)\left(\frac{2014-2}{2}+1\right)}{2}=\text{1015056}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(2015-x\right)\ge0\\...\\\left(x-1007\right)\left(1009-x\right)\ge0\end{cases}}\)và \(x=2018\)
\(\Leftrightarrow\hept{\begin{cases}1\le x\le2015\\...\\1007\le x\le1009\end{cases};x=1008}\)\(\Leftrightarrow x=1008\)
Vậy Max \(A=\text{1015056}\)tại \(x=1008\)
Câu kết luận là min A nhé -.-
T^T
Chả bao giờ làm dc bài nào hoàn chỉnh :)
Đề của bạn còn sai, thiếu nhiều chỗ lắm
Cho góc nhọn xOy . Trên Ox lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Từ A kẻ đường thẳng vuông góc với Oy cắt Oy ở E , từ B kẻ đường thẳng vuông góc với Ox cắt Ox tại F . AE và BF cắt nhau tại I
Đến đây bạn có thể tự làm được rồi
#Chúc bạn may mắn
\(\left(\frac{3}{5}\right)^{2012}:\left(\frac{9}{25}\right)^{1000}\)
\(=\left(\frac{3}{5}\right)^{2012}:\left[\left(\frac{3}{5}\right)^2\right]^{1000}\)
\(=\left(\frac{3}{5}\right)^{2012}:\left(\frac{3}{5}\right)^{2000}\)
\(=\left(\frac{3}{5}\right)^{12}\)
Ta có hình vẽ sau: ( tự vẽ hình nha bạn)
a) Xét \(\Delta ABD\)và \(\Delta HBD\):
BD: cạnh chung
\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)
\(\widehat{BAD}=\widehat{BHD}=90^o\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
=> AD=HD( 2 cạnh tương ứng)
=> đpcm
b)Xét \(\Delta DHC\)vuông tại H có:
DC>HC
Mà HD=AD ( cm câu a)
=> DC> AD
c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)
Xét \(\Delta ADK\)và \(\Delta HDC:\)
AD=HD( cm câu a)
\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)
\(\widehat{DHK}=\widehat{DHC}=90^o\)
=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)
=> AK=HC ( 2 cạnh t/ứ)
Mà AB=BH( \(\Delta ABD=\Delta HBD\))
=> AB+AK=HC+BH
=> BK=BC
=> \(\Delta BKC\)cân tại B
=> đpcm
A B C D H K
a) Xét tam giác ABD và tam giác HBD có :
BD chung
^ABD = ^HBD ( BD là phân giác của ^B )
=> Tam giác ABD = tam giác HBD ( ch - gn )
=> AD = HD ( hai cạnh tương ứng )
=> AB = AH ( _________________ )
b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )
^BHD + ^DHC = 1800 ( kề bù )
Mà ^BAD = ^BHD = 900
=> ^DAK = ^DHC = 900
Xét tam giác DAK và tam giác DHC có :
^DAK = ^DHC ( cmt )
DA = DH ( cmt )
^ADK = ^HDC ( đối đỉnh )
=> Tam giác DAK = tam giác DHC ( g.c.g )
=> AD = DC ( hai cạnh tương ứng )
=> AK = HC ( _________________ )
c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )
Ta có : BK = BA + AK
BC = BH + HC
Mà BA = BH , AK = HC ( cmt )
=> BK = BC
Xét tam giác KBC có BK = BC ( cmt )
=> Tam giác KBC cân tại B ( đpcm )