Chứng tỏ rằng khi m thay đổi các đường thẳng có phương trình:
(-5m+4)x+(3m-2)y+3m-4=0 luôn đi qua một điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I J K M N P D E F
I, J, K lần lượt là chân đường cao hạ từ A, B, C; H là giao điểm ba đường cao
M, N, P lần lượt là trung điểm của BC , AC, AB
D, E, F lần lượt là trung điểm của HA, HB, HC
O là giao điểm của NE và PF
+) NP là đường trung bình tam giác ABC => NP//=1/2 BC (1)
EF là đường trung bình tam giác HCB => EF//=1/2 BC (2)
Từ (1), (2) => NFEP là hình bình hành (3)
NF là đường trung bình tam giác ACH => NF//AH=> NF//AI mà AI vuông BC , BC//EF => NF vuông EF (4)
Từ (3), (4) => NFEP là hình chữ nhật => Tâm đường tròn ngoại tiếp NFEP là O giao của FP và NE
và O là trung điểm FP, O là trung điểm NE
+) Tương tự NDEM là hình chữ nhật => Tâm đường tròn ngoại tiếp NDEM là O ( trung điểm NE)
=> O là trung điểm DM
+) Tam DIM vuông tại I => Tâm đường tròn ngoại tiếp DIM là O trung điểm DM
+) Tương tự O là tâm đường tròn ngoại tiếp tam giác FJP, EKN
=> Vậy 9 điểm trên cùng thuộc đường tròn tâm O đường kính NE
Câu hỏi của Mavis Vermillion - Toán lớp 9 - Học toán với OnlineMath Em tham khảo ở link này nhé!
giỏi thì làm bài nÀY nèk
chứ mấy bác cứ đăng linh ta linh tinh lên online math
Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ
đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh
Bạn ơi ! Đề bài đâu ạ ! Có mỗi chữ giải hệ phương trình à !
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Gọi M (xM; yM) là điểm cố dịnh mà đường thẳng đi qua
=> (-5m+4)xM + (3m-2)yM+ 3m-4=0 \(\forall m\in R\)
<=> -5mxM + 4xM+ 3myM -2yM +3m -4 =0 \(\forall m\in R\)
<=> (-5mxM +3myM+3m) + (4xM-2yM-4) =0 \(\forall m\in R\)
<=> m(-5xM+3yM+3) + 2( 2xM-yM-2) =0 \(\forall m\in R\)
<=>\(\hept{\begin{cases}-5x_M+3y_M+3=0\\2x_M-y_M-2=0\end{cases}}\) \(\forall m\in R\)
\(\Leftrightarrow\hept{\begin{cases}x_M=3\\y_M=4\end{cases}}\)
VẬY M( 3;4 )
Chúc học tốt!!
Áp dụng: Am+B=0 \(\forall m\in R\)
\(\Rightarrow\hept{\begin{cases}A=0\\B=0\end{cases}}\)