\(A=\left(x-2009\right)^2+\left(x-2011\right)^2+\left(x-2013\right)^2+\left(x-2015\right)^2+2016\left(1\right)\)
Đặt \(x-2009=t\)Thay vào (1) ta được:
\(A=t^2+\left(t-2\right)^2+\left(t-4\right)^2+\left(t-6\right)^2+2016\)
\(=t^2+t^2-4t+4+t^2-8t+16+t^2-12t+36+2016\)
\(=4t^2-24t+2072\)
\(=4\left(t^2-6t+9\right)+2036\)
\(=4\left(t-3\right)^2+2036\)
Vì \(4\left(t-3\right)^2\ge0;\forall x\)
\(\Rightarrow4\left(t-3\right)^2+2036\ge0+2036;\forall x\)
Hay \(A\ge2036;\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow\left(t-3\right)^2=0\)
\(\Leftrightarrow t=3\)Thay t=x-2009 ta được:
\(x-2009=3\)
\(\Leftrightarrow x=2012\)
Vậy \(A_{min}=2036\Leftrightarrow x=2012\)