K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

tự kẻ hình:3333

a) vì BE là phân giác của QBA=> B1=B2=QBA/2

vì BD là phân giác của ABC=> B3=B4=ABC/2

ta có EBD= B2+B3=QBA/2 +ABC/2= QBA+ABC/2= 180 độ/2=90 độ ( QBA kề bù với ABC)

trong tứ giác AEBD có EBD= 90 độ=> AEBD là HCN=> EBD=BDA=DAE=AEB= 90 độ

=> BEQ= 90 độ ( kề bù với AEB), BDP= 90 độ( kề bù với BDA)

=> BE vuông góc với AQ, BD vuông góc với AP

b)vì AEBD là hcn => AE=BD, 

xét tam giác BEQ và tam giác BEA có

B1=B2(gt)

BE chung

BEQ=BEA(=90 độ)

=> tam giác BEQ= tam gáic BEA(gcg)

=> AE=EQ ( hai cạnh tương ứng)

ta có DBP+EBQ= 90 độ( EBD= 90 độ)

VÌ EBQ vuông tại E=> EQB+EBQ= 90 độ

=> DBP=EQB (=90 độ-EBQ)

xét tam giác BEQ và tam giác PDB có

EQ=BD(=AE)

BEQ=PDB(=90 độ)

DBP=EQB(cmt)

=> tam giác BEQ= tam gáic PDB(gcg)

=> QB=PB ( hai cạnh tương ứng)

=> B là trung điểm của PQ

c) xét tam giác AED và tam giác DBA có 

AE=BD(cmt)

DAE=BDA(=90 độ)

AD chung

=> tam giác AED= tam giác DBA (cgc)

=> AB=DE( hai cạnh tương ứng)

10 tháng 6 2020

\(g\left(x\right)=x^3+8x=x\left(x^2+8\right)\)

Để g(x) có nghiệm => \(x\left(x^2+8\right)\)=0

=> x=0 (vì x2+8 >0 với mọi x)

Vậy x=0 là nghiệm của đa thức

10 tháng 6 2020

g(x) = x3 + 8x 

g(x) = 0 <=> x3 + 8x = 0

             <=> x(x2 + 8) = 0

             <=> x = 0 hoặc x2 + 8 = 0

* x2 + 8 = 0 => x2 = -8 ( vô lí )

=> x = 0

Vậy nghiệm của g(x) là 0