K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7

\(M=x^2-4x+2y^2-4y+20\\ =\left(x^2-4x+4\right)+\left(2y^2-4y+2\right)+14\\ =\left(x^2-2\cdot x\cdot2+2^2\right)+2\left(y^2-2\cdot y\cdot1+1^2\right)+14\\ =\left(x-2\right)^2+2\left(y-1\right)^2+14\)

Ta có: 

`(x-2)^2>=0` với mọi x 

`2(y-1)^2>=0` với mọi y 

`=>M=(x-2)^2+2(y-1)^2+14>=14` với mọi x,y 

Dấu "=" xảy ra: `x-2=0` và `y-1=0`

`=>x=2` và `y=1`

30 tháng 7

\(A=3x^2+8x+12\\ =3\left(x^2+\dfrac{8}{3}x+4\right)\\ =3\left[\left(x^2+2\cdot x\cdot\dfrac{4}{3}+\dfrac{16}{9}\right)+\dfrac{20}{9}\right]\\ =3\left(x+\dfrac{4}{3}\right)^2+\dfrac{20}{3}\)

Ta có: `3(x+4/3)^2>=0` với mọi x 

`=>A=3(x+4/3)^2+20/3>=20/3` với mọi x

Dấu "=" xảy ra `x+4/3=0<=>x=-4/3` 

30 tháng 7

\(x\left(x-4\right)+5=x^2-4x+5\\ =x^2-4x+4+1\\ =x^2-2.2x+2^2+1\\ =\left(x-2\right)^2+1\)

Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1>0\)

\(\Leftrightarrow x\left(x-4\right)+5>0\forall x\)

30 tháng 7

Ta có:

\(x\left(x-4\right)+5\\ =x^2-4x+5\\ =\left(x^2-4x+4\right)+1\\ =\left(x-2\right)^2+1\)

Ta có: `(x-2)^2>=0` với mọi x 

`=>(x-2)^2+1>=1>0` với mọi x 

Hay `x(x-4)+5` luôn lớn hơn không 

30 tháng 7

               

Gọi A là biến cố "Thẻ lấy ra ghi số là ước của 21"

=>A={1;3;7}

=>n(A)=3

\(\Omega=\left\{1;2;3;...;20\right\}\)

=>\(n\left(\Omega\right)=20\)

\(P_A=\dfrac{3}{20}\)

30 tháng 7

\(A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\\ =x^3-xy-x^3-x^2y+x^2y-xy\\ =-2xy\)

Thay `x=1/2;y=-100` vào A ta có:

\(A=-2\cdot\dfrac{1}{2}\cdot\left(-100\right)=100\)

\(B=\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\\=x^3+3x^2-5x-15-x^3+4x+x^2-4x^2\\ =\left(x^3-x^3\right)+\left(3x^2-4x^2+x^2\right)+\left(-5x+4x\right)-15\\ =-x-15\)

a: Khi x=2 và y=-10 thì \(A=3\cdot2^2+4\cdot2\cdot\left(-10\right)-2\cdot\left(-10\right)^2\)

=12-80-200

=12-280=-268

Khi x=2 và y=-10 thì \(B=-2^2+3\cdot\left(-10\right)^2-4\cdot2\cdot\left(-10\right)\)

=-4+300+80

=380-4=376

 

30 tháng 7

\(4-x^2+2x\\ =\left(-x^2+2x-1\right)+5\\ =-\left(x^2-2x+1\right)+5\\ =-\left(x-1\right)^2+5\)

Ta có: \(-\left(x-1\right)^2\le0\forall x\)

\(=>-\left(x-1\right)^2+5\le5\forall x\)

Dấu "=" xảy ra: `x-1=0<=>x=1`

Vậy: ... 

30 tháng 7

\(\left(2a+b\right)^2-\left(2b+a\right)^2\\ =\left[\left(2a+b\right)-\left(2b+a\right)\right]\left[\left(2a+b\right)+\left(2b+a\right)\right]\\ =\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\\ =\left(a-b\right)\left(3a+3b\right)\\ =3\left(a-b\right)\left(a+b\right)\)