Phân tích đa thức thành nhân tử:
\(^{a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(a-b\right)-\left(a+b\right)\)
\(=a-b-a+b\)
\(=\left(b+b\right)+\left(a-a\right)\)
\(=b+b+0\)
\(=2b+0=2b\)
Ta có:
(x2 + y2)2 - 4x2y2 = (x2 + y2)2 - (2xy)2 = (x2 + y2 - 2xy)(x2 + y2 + 2xy) = (x - y)2(x + y)2
(x^2+y^2)^2-4x^2y^2
=x^4+2x^2y^2+y^4-4x^2y^2
=x^4-2x^2y^2+^4
=(x^2-y^2)^2
hok tốt he
\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(=a^3\left(b-c\right)+b^3\left[\left(c-b\right)-\left(a-b\right)\right]+c^3\left(a-b\right)\)
\(=a^3\left(b-c\right)-b^3\left(b-c\right)-b^3\left(a-b\right)+c^3\left(a-b\right)\)
\(=\left(b-c\right)\left(a^3-b^3\right)-\left(a-b\right)\left(b^3-c^3\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2-b^2-bc-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab-bc-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\left(a+b+c\right)\)
a ) a ³ (b - c) + b ³ (c - a)+ c ³ (a - b)
=a3(b-c)-b3[(b-c)+(a-b)]+c3(a-b)
=a3(b-c)-b3(b-c)-b3(a-b)+c3(a-b)
=(b-c)(a-b)(a2+ab+b2)-(b-c)(a-b)(b2+bc+c2)
=(b-c)(a-b)(a2+2b2+c2+ab+bc)
\(a,x^2-25-x-5=0\)
\(x^2-x-30=0\)
\(x^2+5x-6x-30=0\)
\(x\cdot\left(x+5\right)-6\cdot\left(x+5\right)=0\)
\(\left(x+5\right)\cdot\left(x-6\right)=0\)
\(\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}}\)
b) \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(\Leftrightarrow\left(10x^2+9x\right)-\left(10x^2+13x-3\right)=8\)
\(\Leftrightarrow-4x+3=8\)
\(\Leftrightarrow-4x=5\Leftrightarrow x=\frac{-5}{4}\)
Ta có: \(P=-x^2+2x+5\)
\(=-x^2+2x-1+6\)
\(=-\left(x-1\right)^2-6\)
Vì \(-\left(x-1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-1\right)^2-6\le0-6;\forall x\)
Hay\(P\le-6;\forall x\)
Dấu "="xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MAX P=-6 khi x=1