Cho \(\Delta ABC\)nhọn có AB=AC. Kẻ BD \(\perp\)AC tại D, kẻ \(CE\perp AB\) tại E.Chứng minh \(\Delta ABD=\Delta ACE\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5\(^{x-2}\)=1
<=>5\(^{x-2}\)=5\(^0\)
=>x-2=0
<=>x=0+2
<=>x=2
Vậy x=2
a) 43+(9−21)=317−(x+317)43+9−21=317−x−31752−21=(317−317)−x31=−xx=−3143+(9−21)=317−(x+317)43+9−21=317−x−31752−21=(317−317)−x31=−xx=−31Vậy x = -31
b) (15−x)+(x−12)=7−(−5+x)15−x+x−12=7+5−x(x−x)+(15−12)=12−x3=12−xx=9(15−x)+(x−12)=7−(−5+x)15−x+x−12=7+5−x(x−x)+(15−12)=12−x3=12−xx=9Vậy x = 9
c) x−{57−[42+(−23−x)]}=13−{47+[25−(32−x)]}x−{57−[42+(−23)−x]}=13−{47+[25−32+x]}x−{57−42+23+x}=13−{47+25−32+x}x−57+42−23−x=13−47−25+32−x−57+42−23=−34−25+32−x−15−23=−59+32−x−38=−27−xx=11x−{57−[42+(−23−x)]}=13−{47+[25−(32−x)]}x−{57−[42+(−23)−x]}=13−{47+[25−32+x]}x−{57−42+23+x}=13−{47+25−32+x}x−57+42−23−x=13−47−25+32−x−57+42−23=−34−25+32−x−15−23=−59+32−x−38=−27−xx=11Vậy x = 11
d) −7+|x−4|=−3|x−4|=4⇒[x−4=4x−4=−4⇒[x=8x=0−7+|x−4|=−3|x−4|=4⇒[x−4=4x−4=−4⇒[x=8x=0Vậy x∈{8;0}x∈{8;0}
e) 13−|x+5|=13|x+5|=0⇒x+5=0⇒x=−513−|x+5|=13|x+5|=0⇒x+5=0⇒x=−5Vậy x = -5
g) |x−10|−(−12)=4|x−10|=−8⇒x∈∅(vì |x−10|≥0với mọi x)|x−10|−(−12)=4|x−10|=−8⇒x∈∅(vì |x−10|≥0với mọi x)Vậy x∈∅x∈∅
h) |x+2|<50≤|x+2|<5⇒|x+2|∈{1;2;3;4}⇒x+2∈{1;−1;2;−2;3;−3;4;−4}⇒x∈{−1;−3;0;−4;1;−5;2;−6}|x+2|<50≤|x+2|<5⇒|x+2|∈{1;2;3;4}⇒x+2∈{1;−1;2;−2;3;−3;4;−4}⇒x∈{−1;−3;0;−4;1;−5;2;−6}Vậy x∈{−1;−3;0;−4;1;−5;2;−6}