Chọn phát biểu đúng trong các phát biểu sau:
A. Với Ox, Oy, Oz là ba tia chung gốc thì
B. Hai góc tù là hai góc kề nhau
C. Nếu là hai góc bù nhau thì
D. Nếu tia Op nằm giữa hai tia Om và On thì ta có
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình bên ??? Where's hình?
A A A B B B C C C I I I M M M
Trong \(\Delta AMI\),ta có :
MA < IA + IM <=> MA + MB < IA + IM + MB
<=> MA + MB < IA + IB(1)
Trong \(\Delta BCI\),ta có : IB < CI + CB <=> IA + IB < IA + CI + CB
<=> IA + IB < CA + CB (2)
Từ (1) và (2) => MA + MB < IA + IB < CA + CB
\(A=\left(-8x^2y^3\right)\left(-\frac{1}{2}x\right)\)
\(A=\left(-8x^2y^3\right)\left(-\frac{1}{2}x\right)=4x^3y^3\)
Bậc : 6
\(\sqrt{3333333}+\sqrt{33333333}+\sqrt{x}=2007\)
\(\Rightarrow\sqrt{33333333}+\sqrt{x}=181,2582329365414\)
\(\Rightarrow\sqrt{x}=-5592,24443009\)
\(\Rightarrow x=\sqrt{-5592,24443009}\)
\(\sqrt{3333333}+\sqrt{33333333}+\sqrt{x}=2007\)
\(\Rightarrow\sqrt{33333333}+\sqrt{x}=181,2582329365414\)
\(\Rightarrow\sqrt{x}=-5592,24443009\)
\(\Rightarrow x=\sqrt{-5592,24443009}\)
A B C H M
a ) Ta có ΔABC cân tại A .
\(\Rightarrow\) AB = AC
Có AH là đường cao
\(\Rightarrow\) AH đồng thời là trung tuyến
\(\Rightarrow\) H là trung điểm của BC
Xét ΔAHB và ΔAHC có :
AB = AC
Góc AHB = Góc AHC = 90
BH = HC
\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )
b ) Xét ΔAHB vuông tại H có .
\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)
c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .
\(\Rightarrow\) ΔABM cân tại B
d ) Ta có : BAM cân tại B
\(\Rightarrow\) Góc BAM = Góc BMA
Xét ΔBAC cân tại A có HA là trung tuyến
\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .
\(\Rightarrow\) Góc BAH = Góc CAH
\(\Rightarrow\) Góc BMA = Góc HAC
Mà 2 góc này ở vị trí so le trong của BM và AC .
\(\Rightarrow\) BM // AC
A B C H M
a) ( Cái này có khá nhiều cách chứng minh nhé . )
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )
b) => HB = HC ( hai cạnh tương ứng )
Mà BC = 8cm
=> HB = HC = BC/2 = 8/2 = 4cm
Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :
AB2 = AH2 + HB2
52 = AH2 + 42
=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)
c) HM là tia đối của HA
=> ^AHB + ^BHM = 1800
=> 900 + ^BHM = 1800
=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H
Xét tam giác vuông AHB và tam giác vuông BHM ta có :
HM = HA ( gt )
^BHM = ^AHB ( cmt )
HB chung
=> Tam giác AHB = tam giác BHM ( c.g.c )
=> BM = BA ( hai cạnh tương ứng )
Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B
d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a)
Tam giác AHB = Tam giác BHM ( theo ý c)
Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM
=> ^HBM = ^ACH ( hai góc tương ứng )
mà hai góc ở vị trí so le trong
=> BM // AC ( đpcm )
( Hình có thể k đc đẹp lắm )
Bài làm:
Ta có: \(x=2019\Rightarrow2020=x+1\)
Thay vào ta được:
\(f\left(2019\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(f\left(2019\right)=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...-x^3-x^2+x^2+x-1\)
\(f\left(2019\right)=x-1\)
Thay \(x=2019\)vào ta được:
\(f\left(2019\right)=2019-1=2018\)
Vậy f(2019) = 2018
\(f\left(x\right)=x^{99}-2020x^{98}+2020x^{97}-2020x^{96}+...-2020x^2+2020x-1\)
\(f\left(2019\right)=2019^{99}-2020.2019^{98}+2020.2019^{97}-...+2020.2019-1\)
Xét \(2020.2019^{98}=2019^{99}+2019^{98};2020.2019^{97}=2019^{98}+2019^{97}\)
\(2020.2019^{96}=2019^{97}+2019^{96};...;2020.2019=2019^2+2019\)
\(\Rightarrow f\left(2019\right)=2019^{99}-2019^{99}-2019^{98}+2019^{97}-2019^{97}-...+2019^2+2019-1\)
\(\Rightarrow f\left(2019\right)=2019-1=2018\). Vậy \(f\left(2019\right)=2018\)
a) *Ta có: D(x) = 2x^5 + 3x^4 - x^5 - 2x^3 - x + 3
D(x) = ( 2x^5 - x^5 ) + 3x^4 - 2x^3 - x + 3
D(x) = x^5 + 3x^4 - 2x^3 - x + 3
*Ta có: M(x) = -2x + 2x^4 + x - 4x^3 - 5x^4 - 6
M(x) = ( 2x^4 - 5x^4 ) - 4x^3 - ( 2x - x ) - 6
M(x) = -3x^4 - 4x^3 - x - 6
Vậy
b) *Ta có : D(x) + M(x) = ( x^5 + 3x^4 - 2x^3 - x + 3 ) + ( -3x^4 - 4x^3 - x - 6 )
D(x) + M(x) = x^5 + 3x^4 - 2x^3 - x + 3 - 3x^4 - 4x^3 - x - 6
D(x) + M(x) = x^5 + ( 3x^4 - 3x^4 ) - ( 2x^3 + 4x^3 ) - ( x + x ) + ( 3 - 6 )
D(x) + M(x) = x^5 - 6x^3 - 2x - 3
*Ta có : D(x) - M(x) = ( -3x^4 - 4x^3 - x - 6 ) - ( x^5 + 3x^4 - 2x^3 - x + 3 )
D(x) - M(x) = -3x^4 - 4x^3 - x - 6 - x^5 - 3x^4 + 2x^3 + x - 3
D(x) - M(x) = -x^5 - ( 3x^4 + 3x^4 ) - ( 4x^3 - 2x^3 ) - ( x - x ) - ( 6 + 3 )
D(x) - M(x) = -x^5 - 6x^4 -2x^3 - 9
Vậy
a, Ta có:
\(D\left(x\right)=2x^5+3x^4-x^5-2x^3-x+3=x^5+3x^4-2x^3-x+3\)
\(M\left(x\right)=-2x+2x^4+x-4x^3-5x^4-6=-x-3x^4+4x^3-6\)
Sắp xếp : \(D\left(x\right)=x^5+3x^4-2x^3-x+3\)
\(M\left(x\right)=-3x^4+4x^3-x-6\)
b, \(D\left(x\right)+M\left(x\right)=x^5-6x^3-2x-3\)
\(D\left(x\right)-M\left(x\right)=-x^5-6x^4-2x^3-9\)
P/S : lm tắt
c, Đặt \(-3x^4+4x^3-x-6=0\)
=> Đa thức vô nghiệm
Chắc đề sai từ cái ý M(x) ý vì ko có j nên viết 2x cx ko tệ.