K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

Cho hình bên ??? Where's hình?

A A A B B B C C C I I I M M M

 Trong \(\Delta AMI\),ta có :

MA < IA + IM <=> MA + MB < IA + IM + MB

                      <=> MA + MB < IA + IB(1)

Trong \(\Delta BCI\),ta có : IB < CI + CB <=> IA + IB < IA + CI + CB

                                                           <=> IA + IB < CA + CB      (2)

Từ (1) và (2) => MA + MB < IA + IB < CA + CB

A B C H M D E F

Vẽ hình rồi tự kí hiệu tự lm bn nhé ! 

29 tháng 6 2020

Bài làm

Mik bút hết mực rồi nên dùng tạm bút chì

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với...
Đọc tiếp

\(1. Sử dụng hai góc kề bù có ba điểm nằm trên hai cạnh là hai tia đối nhau. 2. Ba điểm cùng thuộc một tia hoặc một một đường thẳng 3. Trong ba đoạn thẳng nối hai trong ba điểm có một đoạn thẳng bằng tổng hai đoạn thẳng kia. 4. Hai đoạn thẳng cùng đi qua hai trong ba điểm ấy cùng song song với đường thẳng thứ ba. 5. Hai đường thẳng cùng đi qua hai trong ba điểm ấy cùng vuông góc với đường thẳng thứ ba. 6. Đường thẳng cùng đi qua hai trong ba điểm ấy có chứa điểm thứ ba. 7. Sử dụng tính chất đường phân giác của một góc, tính chất đường trung trực của đoạn thẳng, tính chất ba đường cao trong tam giác . 8. Sử dụng tính chất hình bình hành. 9. Sử dụng tính chất góc nội tiếp đường tròn. 10. Sử dụng góc bằng nhau đối đỉnh 11. Sử dụng trung điểm các cạnh bên, các đường chéo của hình thang thẳng hàng 12. Chứng minh phản chứng 13. Sử dụng diện tích tam giác tạo bởi ba điểm bằng 0 14. Sử dụng sự đồng qui của các đường thẳng.\)

0
26 tháng 6 2020

Giúp mk nào, cần gấp lắm

\(A=\left(-8x^2y^3\right)\left(-\frac{1}{2}x\right)\)

\(A=\left(-8x^2y^3\right)\left(-\frac{1}{2}x\right)=4x^3y^3\)

Bậc : 6

30 tháng 6 2020

\(\sqrt{3333333}+\sqrt{33333333}+\sqrt{x}=2007\)
 

\(\Rightarrow\sqrt{33333333}+\sqrt{x}=181,2582329365414\)

\(\Rightarrow\sqrt{x}=-5592,24443009\)

\(\Rightarrow x=\sqrt{-5592,24443009}\)

30 tháng 6 2020

\(\sqrt{3333333}+\sqrt{33333333}+\sqrt{x}=2007\)

\(\Rightarrow\sqrt{33333333}+\sqrt{x}=181,2582329365414\)

\(\Rightarrow\sqrt{x}=-5592,24443009\)

\(\Rightarrow x=\sqrt{-5592,24443009}\)

26 tháng 6 2020

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

26 tháng 6 2020

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )

26 tháng 6 2020

Bài làm:

Ta có: \(x=2019\Rightarrow2020=x+1\)

Thay vào ta được:

\(f\left(2019\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(f\left(2019\right)=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...-x^3-x^2+x^2+x-1\)

\(f\left(2019\right)=x-1\)

Thay \(x=2019\)vào ta được:

\(f\left(2019\right)=2019-1=2018\)

Vậy f(2019) = 2018

\(f\left(x\right)=x^{99}-2020x^{98}+2020x^{97}-2020x^{96}+...-2020x^2+2020x-1\)

\(f\left(2019\right)=2019^{99}-2020.2019^{98}+2020.2019^{97}-...+2020.2019-1\)

Xét  \(2020.2019^{98}=2019^{99}+2019^{98};2020.2019^{97}=2019^{98}+2019^{97}\)

\(2020.2019^{96}=2019^{97}+2019^{96};...;2020.2019=2019^2+2019\)

\(\Rightarrow f\left(2019\right)=2019^{99}-2019^{99}-2019^{98}+2019^{97}-2019^{97}-...+2019^2+2019-1\)

\(\Rightarrow f\left(2019\right)=2019-1=2018\). Vậy \(f\left(2019\right)=2018\)

26 tháng 6 2020

a) *Ta có: D(x) = 2x^5 + 3x^4 - x^5 - 2x^3 - x + 3

                 D(x) = ( 2x^5 - x^5 ) + 3x^4 - 2x^3 - x + 3

                 D(x) = x^5 + 3x^4 - 2x^3 - x + 3

    *Ta có: M(x) = -2x + 2x^4 + x - 4x^3 - 5x^4 - 6

                 M(x) = ( 2x^4 - 5x^4 ) - 4x^3 - ( 2x - x ) - 6

                 M(x) = -3x^4 - 4x^3 - x - 6

Vậy   

b) *Ta có : D(x) + M(x) = ( x^5 + 3x^4 - 2x^3 - x + 3 ) + ( -3x^4 - 4x^3 - x - 6 ) 

                  D(x) + M(x) = x^5 + 3x^4 - 2x^3 - x + 3 - 3x^4 - 4x^3 - x - 6

                  D(x) + M(x) = x^5 + ( 3x^4 - 3x^4 ) - ( 2x^3 + 4x^3 ) - ( x + x ) + ( 3 - 6 )

                  D(x) + M(x) = x^5 - 6x^3 - 2x - 3

     *Ta có : D(x) - M(x) = ( -3x^4 - 4x^3 - x - 6 ) -  ( x^5 + 3x^4 - 2x^3 - x + 3 ) 

                   D(x) - M(x) = -3x^4 - 4x^3 - x - 6 - x^5 - 3x^4 + 2x^3 + x - 3

                   D(x) - M(x) = -x^5 - ( 3x^4 + 3x^4 ) - ( 4x^3 - 2x^3 ) - ( x - x ) - ( 6 + 3 )

                   D(x) - M(x) = -x^5 - 6x^4 -2x^3 - 9

Vậy

a, Ta có:

 \(D\left(x\right)=2x^5+3x^4-x^5-2x^3-x+3=x^5+3x^4-2x^3-x+3\)

\(M\left(x\right)=-2x+2x^4+x-4x^3-5x^4-6=-x-3x^4+4x^3-6\)

Sắp xếp : \(D\left(x\right)=x^5+3x^4-2x^3-x+3\)

\(M\left(x\right)=-3x^4+4x^3-x-6\)

b, \(D\left(x\right)+M\left(x\right)=x^5-6x^3-2x-3\)

\(D\left(x\right)-M\left(x\right)=-x^5-6x^4-2x^3-9\)

P/S : lm tắt 

c, Đặt \(-3x^4+4x^3-x-6=0\)

=> Đa thức vô nghiệm 

Chắc đề sai từ cái ý M(x) ý vì ko có j nên viết 2x cx ko tệ.