CHO BIỂU THỨC M= X2- 5 / X2- 2 (X THUỘC Z) TÌM SỐ NGUYÊN X ĐỂ M LÀ SỐ NGUYÊN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Để C là số dương thì 2 biểu thức \(\frac{1}{2}-x\)và \(\frac{1}{3}-x\)phải cùng dấu nên ta xét 2 trường hợp sau:
+ TH1: \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}}\Rightarrow x< \frac{1}{3}\)
+ TH2: \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}\Rightarrow}x>\frac{1}{2}\)
Vậy khi \(x< \frac{1}{3}\)hoặc \(x>\frac{1}{2}\)thì biểu thức C nhận giá trị dương
Học tốt!!!!
Để C > 0
=> \(\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)>0\)
TH1 \(\hept{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}\Rightarrow}x>\frac{1}{2}>\frac{1}{3}\Rightarrow x>\frac{1}{2}}\)
TH2 \(\hept{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}\Rightarrow}x< \frac{1}{3}< \frac{1}{2}}\Rightarrow x< \frac{1}{3}\)
Vậy khi x > 1/2 hoặc x < 1/3 thì C > 0
\(C=\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)\)
c là số dương
\(\Rightarrow C>0\)
\(\Rightarrow\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)>0\)
thì 1/2-x và 1/3-x cùng dấu
\(th1\orbr{\begin{cases}\frac{1}{2}-x>0\\\frac{1}{3}-x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>\frac{1}{3}\end{cases}\Leftrightarrow x>\frac{1}{2}>\frac{1}{3}\Rightarrow x>\frac{1}{2}}\)
\(th2\orbr{\begin{cases}\frac{1}{2}-x< 0\\\frac{1}{3}-x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< \frac{1}{3}\end{cases}\Leftrightarrow x< \frac{1}{3}< \frac{1}{2}\Rightarrow x< \frac{1}{3}}\)
vậy khi \(x>\frac{1}{2}\)hoặc\(x< \frac{1}{3}\)thì \(C>0\)hay C là số dương
\(x:\left(\frac{-1}{2}\right)^3=\left(\frac{-1}{2}\right)^2\)
\(\Rightarrow x=\left(\frac{-1}{2}\right)^2\times\left(\frac{-1}{2}\right)^3\)\(=\left(\frac{-1}{2}\right)^5=\frac{-1}{32}\)
Vậy: \(x=\frac{-1}{32}\)
\(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M nguyên => \(\frac{3}{x^2-2}\)nguyên
=> \(3⋮x^2-2\)
=> \(x^2-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì x thuộc Z => x = \(\pm1\)
Bài làm:
\(M=\frac{x^2-5}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M là số nguyên => \(\frac{3}{x^2-2}\inℤ\Rightarrow x^2-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;3;5\right\}\Rightarrow x\in\left\{-1;1\right\}\)
Vậy x = 1 hoặc x = -1 thì M nguyên