Giúp mình câu b) và c) với ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho $x, \, y$ là hai số thực lớn hơn $\sqrt{2}$. Chứng minh rằng $x^4-x^3y+x^2y^2-xy^3+y^4>x^2+y^2$.
Xét \(f\left(x\right)=VT=x^2+y^2+xy-3x-3y+3\)
\(=x^2+\left(y-3\right)x+y^2-3y+3\)
Có \(\Delta=\left(y-3\right)^2-4\left(y^2-3y+3\right)\)
\(=y^2-6y+9-4y^2+12y-12\)
\(=-3y^2+6y-3\)
\(=-3\left(y-1\right)^2\le0\) với mọi \(y\inℝ\)
Mà \(f\left(x\right)\) có hệ số cao nhất bằng \(1>0\) nên từ đây có \(VT=f\left(x\right)\ge0\)
Dấu "=" xảy ra khi \(y=1\). Khi đó \(\Delta=0\) nên pt \(f\left(x\right)=0\) có nghiệm kép \(\Leftrightarrow\) \(x=\dfrac{-\left(y-3\right)}{2}=1\).
Ta có đpcm.
\(\left(2x-1\right)^{50}=2x-1\\ =>\left(2x-1\right)^{50}-\left(2x-1\right)=0\\ =>\left(2x-1\right)\left[\left(2x-1\right)^{49}-1\right]=0\)
TH1:
\(2x-1\\ =>2x=1\\ =>x=\dfrac{1}{2}\)
TH2:
\(\left(2x-1\right)^{49}-1=0\\=>\left(2x-1\right)^{49}=1\\ =>\left(2x-1\right)^{49}=1^{49}\\ =>2x-1=1\\ =>2x=1+1=2\\ =>x=\dfrac{2}{2}\\ =>x=1\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{23}+\dfrac{1}{6}\\ =\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\dfrac{1}{23}+\dfrac{1}{6}\\ =\dfrac{1}{6}+\dfrac{1}{23}+\dfrac{1}{6}\\ =\dfrac{2}{6}+\dfrac{1}{23}\\ =\dfrac{1}{3}+\dfrac{1}{23}\\ =\dfrac{26}{69}\)
\(3^{x-1}+5\cdot3^{x-1}=162\\ =>3^{x-1}\cdot\left(1+5\right)=162\\ =>3^{x-1}\cdot6=162\\ =>3^{x-1}=162:6\\ =>3^{x-1}=27\\ =>3^{x-1}=3^3\\ =>x-1=3\\ =>x=1+3=4\)
\(b)\left\{{}\begin{matrix}x-\dfrac{y}{2}=\dfrac{1}{2}\\\dfrac{x}{3}-2y=-\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-6y=-5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\2x-12y=-10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11y=11\\2x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\2x=1+1=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
\(c)\left\{{}\begin{matrix}5x-0,7y=1\\-10x+1,4y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-0,7y=1\\-5x+0,7y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5x-0,7y=1\\-5x+0,7y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-0,7y=1\\5x-0,7y=1\end{matrix}\right.\)
=> Hpt vô số nghiệm