K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

2032 nha bn

^.^

21 tháng 12 2018

ô mình cũng 2k5

21 tháng 12 2018

a)  Ax, By là các tiếp tuyến của đường tròn (O)

=>  Ax // By  (cùng vuông góc với AB)

=>  AMNB là hình thang

Hình thang AMNB có: OA = OB;  IM = IN

=>  OI là đường trung bình

=>  OI // AM // BN

Lại có:  AM, BN vuông góc với AB

=>  IO vuông góc với AB

=>  AB là tiếp tuyến của đường tròn (I;IO)

21 tháng 12 2018

b)  Góc AMO = góc MOI  (cùng phụ góc MOA)   (1)

Tam giác MON vuông tại M có OI là đường trung tuyến

=> OI = MI = IN

=> tgiac MIO cân tại I

=>  góc IMO = góc MOI   (2)

Từ (1) và (2)  =>  góc AMO = góc IMO

=>  MO là phân gics góc AMN

21 tháng 12 2018

\(\sqrt{28-6\sqrt{3}}\) ms đúng đề chứ bạn

21 tháng 12 2018

\(\sqrt{28-16\sqrt{3}}+\sqrt{13-4\sqrt{3}}\)

\(=\sqrt{\left(4-2\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=\left|4-2\sqrt{3}\right|+\left|2\sqrt{3}-1\right|\)

\(=4-2\sqrt{3}+2\sqrt{3}-1=3\)

24 tháng 12 2018

Ta có

\(x^4+y^4=7z^4+5\Leftrightarrow x^4+y^4+z^4=8z^4+5\)

Áp dụng tính chất lũy thừa bậc 4 của số nguyên a khi chia cho 8 dư 0 hoặc 1

tức là \(a^4\equiv0,1\left(mod8\right)\)

\(\Rightarrow a^4+b^4+c^4\equiv0,1,2,3\left(mod8\right)\)

Mà \(8z^4+5\equiv5\left(mod8\right)\)

vậy pt k có nghiệm nguyên

21 tháng 12 2018

ĐKXĐ:  \(x\ge2\)

Đặt:   \(\sqrt{x+1}=a\);    \(\sqrt{x-2}=b\)    \(\left(a,b\ge0\right)\)

Khi đó ta có hpt:

\(\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(1+ab\right)=3\end{cases}}\)

đến đây bạn tự lm tiếp

21 tháng 12 2018

Không up lung tung nhé

P/s: Tớ có thi Olymipc

#Kook

21 tháng 12 2018

ĐKXĐ:  \(x\ge2\)

Đặt:  \(\sqrt{x+1}=a;\)   \(\sqrt{x-2}=b\)     \(\left(a,b\ge0\right)\)

Khi đó ta có hpt:

\(\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(1+ab\right)=3\end{cases}}\)

tự giải tiếp nhé