K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

Hịch Tướng Sĩ

8 tháng 8 2020

tác phẩm nổi tiếng của hưng đạo vương là:"Hịch Tướng Sỹ"

8 tháng 8 2020

ta sẽ chứng minh với mọi x,y luôn có \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\)(*)

thật vậy, (*) tương đương với \(\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)

\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\), luôn đúng

khi đó áp dụng (*) ta được

\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\)(đpcm)

dấu đẳng thức xảy ra khi và chỉ khi a=b

8 tháng 8 2020

\(\left(\frac{-1}{3}\right)^4=\frac{\left(-1\right)^4}{3^4}=\frac{1}{81}\)

\(\left(-2\frac{1}{4}\right)^3=\left(\frac{-9}{4}\right)^3=\frac{-729}{64}\)

\(\left(-0,2\right)^2=0,04\)

\(\left(-5,3\right)^0=1\)

10 tháng 8 2020

Do:    \(A+B=0\)

=> \(-3x^5y^3+2x^2y^4=0\)

=> \(3x^5y^3-2x^2y^4=0\)

=> \(x^2y^3\left(3x-2y\right)=0\)

=> x=0 hoặc y=0 hoặc   \(x=\frac{2y}{3}\)

Vậy x=0 hoặc y=0 hoặc     \(x=\frac{2y}{3}\)thì \(A+B=0\)

8 tháng 8 2020

Ta có :

\(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

Vậy \(43^4+43^5⋮44\).

Học tốt

\(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

\(\Rightarrow\)\(43^4+43^5⋮44\)

8 tháng 8 2020

Bài làm:

Ta có: \(43^4+43^5\)

\(=43^4\left(1+43\right)\)

\(=43^4.44⋮44\)

=> đpcm

8 tháng 8 2020

Ta có : 434 + 435 = 434(1 + 43) = 434.44 \(⋮\)44

=> 434 + 435 \(⋮\)44 (đpcm)

9 tháng 8 2020

1

a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)

rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau 

suy ra AM = AN 

b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)

rồi chứng minh hai tam giác ABH và ACK bằng nhau

suy ra BH = CK

c) vì hai tam giác ABH và ACK bằng nhau (cmt)

nên AH = AK

d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)

nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)

còn lại tự cm

e) dễ cm tam giác ABC đều 

vẽ \(BH\perp AC\)

nên BH vừa là đường cao; phân giác và trung tuyến

dễ cm \(\Delta BHC=\Delta NKC\)

nên \(\widehat{BCH}=\widehat{NCK}=60^0\)

từ đó dễ cm AMN cân và OBC dều