ten mot tac pham noi tieng cua huong dao vuong tran quoc tuan la gi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta sẽ chứng minh với mọi x,y luôn có \(\frac{x+y}{2}\cdot\frac{x^3+y^3}{2}\le\frac{x^4+y^4}{2}\)(*)
thật vậy, (*) tương đương với \(\left(x+y\right)\left(x^3+y^3\right)\le2\left(x^4+y^4\right)\Leftrightarrow xy\left(x^2+y^2\right)\le x^4+y^4\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(\frac{x+y}{2}\right)^2+\frac{3y^2}{4}\right]\ge0\), luôn đúng
khi đó áp dụng (*) ta được
\(\frac{a+b}{2}\cdot\frac{a^2+b^2}{2}\cdot\frac{a^3+b^3}{2}=\left[\frac{a+b}{2}\cdot\frac{a^3+b^3}{2}\right]\cdot\frac{a^2+b^2}{2}\le\frac{a^4+b^4}{2}\cdot\frac{a^2+b^2}{2}\le\frac{a^6+b^6}{2}\)(đpcm)
dấu đẳng thức xảy ra khi và chỉ khi a=b
Ta có :
\(43^4+43^5\)
\(=43^4\left(1+43\right)\)
\(=43^4.44⋮44\)
Vậy \(43^4+43^5⋮44\).
Học tốt
\(43^4+43^5\)
\(=43^4\left(1+43\right)\)
\(=43^4.44⋮44\)
\(\Rightarrow\)\(43^4+43^5⋮44\)
Bài làm:
Ta có: \(43^4+43^5\)
\(=43^4\left(1+43\right)\)
\(=43^4.44⋮44\)
=> đpcm
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều
Hịch Tướng Sĩ
tác phẩm nổi tiếng của hưng đạo vương là:"Hịch Tướng Sỹ"