K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

MK 2K5 nè kb lun

11 tháng 1 2019

tui!!!!!!!!!!!!!!!!!!!!!!!nữ 2k5 , kg rảnh ( nhảm VL )

11 tháng 1 2019

A B C M N O E F D H R Q P G

a) Dễ thấy: ^CMN = 900 - ^ACB/2;  ^AOQ = ^OAB + ^OBA = 900 - ^ACB/2 => ^CMN = ^AOQ

=> Tứ giác AOQM nội tiếp => ^AQO = ^AMO = 900 (1)

Tương tự ta có: Tứ giác BOPN nội tiếp => ^BPO = ^BNO = 900 (2)

Từ (1) và (2) => ^AQO = ^BPO hay ^AQB = ^BPA => Tứ giác ABPQ nội tiếp (đpcm).

b) Xét \(\Delta\)AQB vuông tại Q: E là trung điểm cạnh AB => ^EQB = ^EBQ = ^ABC/2 = ^QBC 

=> QE // BC (2 góc so le trong bằng nhau). Mà EF là đường trung bình tam giác ABC nên EF // AB

Do đó 3 điểm E,Q,F thẳng hàng (Tiên đề Ơ-clit) (đpcm).

c) Sửa điểm E thành điểm R cho đỡ trùng.

+) C/m : ^BAC = 900 => AR = AC ?

Chứng minh tương tự câu b ta có: PE //AC, gọi G là hình chiếu của O trên cạnh AB

Do ^BAC = 900 => AB vuông góc AC. Từ đó: AC // OG // PE. Áp dụng hệ quả ĐL Thales thì có:

\(\frac{r}{AD}=\frac{OG}{AD}=\frac{EG}{EA}=\frac{PO}{PA}=\frac{ON}{AR}=\frac{r}{AR}\)=> AD=AR (đpcm).

+) C/m : AR = AD => ^BAC = 900 ?

Lại theo hệ quả ĐL Thales, ta có các tỉ số: \(\frac{OG}{AD}=\frac{r}{AR}=\frac{ON}{AR}=\frac{PO}{PA}=\frac{EO}{ED}\)

=> OG // AC (ĐL Thales đảo). Mà OG vuông góc AB => AB vuông  góc AC hay ^BAC = 900 (đpcm).

d) Hệ thức cần chứng minh \(\Leftrightarrow r\left(AB+BC+CA\right)=OC\left(MN+2PQ\right)\)

\(\Leftrightarrow S_{ABC}=S_{CMON}+2S_{CPOQ}\Leftrightarrow2S_{AOB}=2S_{CPOQ}\Leftrightarrow S_{AOB}=S_{CPOQ}\) 

\(\Leftrightarrow OG.AB=OC.PQ\Leftrightarrow\frac{PQ}{AB}=\frac{OG}{OC}\Leftrightarrow\frac{OQ}{OA}=\frac{OM}{OC}\)(Do tứ giác ABPQ nội tiếp)

\(\Leftrightarrow\Delta AOQ~\Delta COM\left(g.g\right)\Leftrightarrow\hept{\begin{cases}\widehat{AQO}=\widehat{CMO}\left(=90^0\right)\\\widehat{OAQ}=\widehat{OCM}\left(=\widehat{OMQ}\right)\end{cases}}\)(Điều này hiển nhiên đúng)

Vậy hệ thức cần chứng minh là đúng => ĐPCM.

11 tháng 1 2019

Thử dùng dãy tỉ số "=" nhau xem sao:

\(\hept{\begin{cases}\frac{x}{105}=\frac{y}{90}\\\frac{y}{24}=\frac{z}{21}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{420}=\frac{y}{360}\\\frac{y}{360}=\frac{z}{315}\end{cases}}\Leftrightarrow\frac{x}{420}=\frac{y}{360}=\frac{z}{315}\)

Theo t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{420}=\frac{y}{360}=\frac{z}{315}=\frac{x+y+z}{420+360+315}=\frac{4}{15}\)

Suy ra \(\hept{\begin{cases}x=\frac{4}{15}.420=112\\y=\frac{4}{15}.360=96\\z=\frac{4}{15}.315=84\end{cases}}\)

11 tháng 1 2019

\(\hept{\begin{cases}x+y+z=11\left(1\right)\\2x-y+z=5\left(2\right)\\3x+2y+z=14\left(3\right)\end{cases}}\)

Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}2x+2y+2z=22\left(4\right)\\3x+3y+3z=33\left(5\right)\end{cases}}\)

Lấy (4) - (2) được \(3y+z=17\left(6\right)\)

Lấy (5) - (3) được \(y+2z=19\left(7\right)\)

Từ (6)  và (7) có hệ \(\hept{\begin{cases}3y+z=17\\y+2z=19\end{cases}}\)

                          \(\Leftrightarrow\hept{\begin{cases}3y+z=17\\3y+6z=57\end{cases}}\)

                          \(\Leftrightarrow\hept{\begin{cases}3y+z=17\\5z=40\end{cases}}\)

                           \(\Leftrightarrow\hept{\begin{cases}3y=9\\z=8\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}y=3\\z=8\end{cases}}\)

Thay vào (1) được x + 3 + 8 = 11

                          <=> x = 0

Vậy ..........

13 tháng 6 2021

1,2m