Giải phương trình : \(x^4+x^2+6x-8=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)
b) \(B=x^2y^3-3xy+4\)
khi x = -1 và y = 2
\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)
\(\Leftrightarrow B=1.8-\left(-6\right)+4\)
\(\Leftrightarrow B=14+4=18\)
c) nhân phần biến với biến hệ với hệ thì ra thôi
Câu 1 a) |x - 2| + 4 = 6
=> |x - 2| = 2
=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy x \(\in\left\{4;0\right\}\)
b) Thay x = -1 ; y = 2 vào B ta có :
B = (-1)2.23 - 3.(-1).2 + 4
= 8 + 6 + 4 = 18
c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)
Hệ số : 12
Bậc của đơn thức : 15
Phần biến x8y7
2) a) f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)
= 4x3 - 2x2 + 2x + 6
Bậc của f(x) - g(x) là 3
b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)
= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1
= 2x + 4
Lại có f(x) + g(x) = 0
=> 2x + 4 = 0
=> 2x = -4
=> x = -2
Vậy x = -2
Đề yêu cầu tìm GTNN hả bạn :)
| x - 7 | + | x + 2 |
= | -( x - 7 ) | + | x + 2 |
= | 7 - x | + | x + 2 |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
| 7 - x | + | x + 2 | ≥ | 7 - x + x + 2 | = | 9 | = 9
Dấu " = " xảy ra khi ab ≥ 0
tức là ( 7 - x )( x + 2 ) ≥ 0
Xét hai trường hợp :
1/ \(\hept{\begin{cases}7-x\ge0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-x\ge-7\\x\ge-2\end{cases}}\Rightarrow\hept{\begin{cases}x\le7\\x\ge-2\end{cases}}\Rightarrow-2\le x\le7\)
2/ \(\hept{\begin{cases}7-x\le0\\x+2\le0\end{cases}}\Rightarrow\hept{\begin{cases}-x\le-7\\x\le-2\end{cases}}\Rightarrow\hept{\begin{cases}x\ge7\\x\le-2\end{cases}}\)( loại )
Vậy GTNN của biểu thức = 9 , đạt được khi -2 ≤ x ≤ 7
a)\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\Leftrightarrow ad< bc\left(đpcm\right)\)
b)
có\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{a+c}< \frac{b}{b+d}\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
có\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\frac{d}{b+d}< \frac{c}{a+c}\)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
từ (1) và (2)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
A B C I H K E F
a,* Xét tam giác ABI và tam giác ACI có :
cạnh AI chung
góc BAI = góc CAI ( vì AI là phân giác góc A )
AB = AC
Do đó : tam giác ABI = tam giác ACI ( c.g.c )
\(\Rightarrow\)IB = IC ( cạnh tương ứng ) ( 1 )
* Vì AB = AC nên tam giác ABC cân tại A :
=> góc B = góc C
Xét hai tam giác vuông BHI và tam giác vuông CKI có :
góc BHI = góc CKI = 90độ
IB = IC ( theo ( 1 ) )
góc B = góc C ( theo chứng minh trên )
Do đó : tam giác BHI = tam giác CKI ( cạnh huyền - góc nhọn )
=> IH = IK ( cạnh tương ứng )
b,Xét tam giác HIE và tam giác KIF có :
góc IHE = góc IKF = 90độ
IH = IK ( theo câu a )
góc HIE = góc KIF( đối đỉnh )
Do đó : tam giác HIE = tam giác KIF ( g.c.g )
=> IE = IF ( cạnh tương ứng )
=> tam giác IEF cân tại I
=> góc IEF = góc IFE = \(\frac{180^0-\widehat{EIF}}{2}\)(2)
Ta lại có : IH = IK
=> tam giác IHK cân tại I
=> góc IKH = góc IHK = \(\frac{180^0-\widehat{HIK}}{2}\) (3)
mà góc HIK = gócEIF (4)
Từ (2) , (3) và (4) suy ra :
góc IEF = góc IFE = góc IKH = góc IHK
mà góc IEF = góc IKH ở vị trí so le trong
=> HK // EF .
Học tốt
A B C I H K 1 2 3 4 E F N
Vì AB = AC => tam giác ABC cân tại A
=> <B = <C
Vì <AHI = <AKI (= 90o)
mà <HAI = <KAI
=> <AHI - <HAI = <AKI - <KAI
=> I2 = I3
Xét tam giác vuông AHI và tam giác vuông AKI có :
+ <HAI = <KAI (gt)
+) <I2 = I3 (cmt)
+) AI chung
=> \(\Delta AHI=\Delta AKI\)(g.c.g)
=> IH = IK (cạnh tương ứng)
Xét tam giác ABI = tam giác ACI có
+) AB = AC
+) <BAI = <CAI
+) AI chung
=> tam giác ABI = tam giác ACI (c.g.c)
=> BI = CI (cạnh tương ứng)
b) Kéo dai AI sao cho AI giao EF tại N
Xét tam giác HIE và tam giác KIF có :
+) <IHE = <IKF (= 90o)
+) <HIE = <KIF (đối đỉnh)
+) HI = IK (câu a)
=> tam giác HIE = tam giác KIF (g.c.g)
=> HE = KF
Lại có AH = AK (vì AB = AC ; BH = CK => AB - BH = AC - CK => AH = AK)
=> AH + HE = AK + KF
=> AE = AF
=> tam giác AEF cân tại A => <E = <F
Trong tam giác AEF có <A + <E + <F = 180o
=> <A + 2<F = 180o (Vì <E = <F)
=> <F = (180o - <A) : 2 (1)
Vì AH = AK
=> Tam giác AHK cân tại A
=> <AHK = <AKH
Trong tam giác AHK có
<A + <AHK + <AKH = 180o
=> <A + 2<AKH = 180o (Vì <AHK = <AKH)
=> <AKH = (180o - A)/2 (2)
Từ (1) (2) => <AKH = <F
=> HK//EF (2 góc đồng vị bằng nhau)
@dcv_new: thử tách theo cách x^4+x^2+6x-6-2 thử đi:)) chắc cũng ra á:)
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^3+x^2+2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\right)\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4\ne0\right)\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)( chắc dân chuyên như cậu hiểu chỗ này á )