K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

@dcv_new: thử tách theo cách x^4+x^2+6x-6-2 thử đi:)) chắc cũng ra á:)

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^3+x^2+2x+8\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\ne0\right)\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)( chắc dân chuyên như cậu hiểu chỗ này á ) 

13 tháng 8 2020

câu 1 

a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)

b) \(B=x^2y^3-3xy+4\)

khi x = -1 và y = 2

\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)

\(\Leftrightarrow B=1.8-\left(-6\right)+4\)

\(\Leftrightarrow B=14+4=18\)

c) nhân phần biến với biến hệ với hệ thì ra thôi

13 tháng 8 2020

Câu 1 a) |x - 2| + 4 = 6

=> |x - 2| = 2

=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Vậy x \(\in\left\{4;0\right\}\)

b) Thay x = -1 ; y = 2 vào B ta có :

B = (-1)2.23 - 3.(-1).2 + 4

= 8 + 6 + 4 = 18

c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)

Hệ số : 12

Bậc của đơn thức : 15

Phần biến x8y7

2) a)  f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)

= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)

= 4x3 - 2x2 + 2x + 6

Bậc của f(x) - g(x) là 3 

b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)

= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1

= 2x + 4

Lại có f(x) + g(x) = 0

=> 2x + 4 = 0

=> 2x = -4

=> x = -2

Vậy x = -2

13 tháng 8 2020

Trả lời giúp mình vs 

ai nhanh mình k cho

       CẢM  ƠN!

13 tháng 8 2020

Đề yêu cầu tìm GTNN hả bạn :)

| x - 7 | + | x + 2 |

= | -( x - 7 ) | + | x + 2 |

= | 7 - x | + | x + 2 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

| 7 - x | + | x + 2 | ≥ | 7 - x + x + 2 | = | 9 | = 9

Dấu " = " xảy ra khi ab ≥ 0

tức là ( 7 - x )( x + 2 ) ≥ 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}7-x\ge0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-x\ge-7\\x\ge-2\end{cases}}\Rightarrow\hept{\begin{cases}x\le7\\x\ge-2\end{cases}}\Rightarrow-2\le x\le7\)

2/ \(\hept{\begin{cases}7-x\le0\\x+2\le0\end{cases}}\Rightarrow\hept{\begin{cases}-x\le-7\\x\le-2\end{cases}}\Rightarrow\hept{\begin{cases}x\ge7\\x\le-2\end{cases}}\)( loại )

Vậy GTNN của biểu thức = 9 , đạt được khi -2 ≤ x ≤ 7

14 tháng 8 2020

a)\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\Leftrightarrow ad< bc\left(đpcm\right)\)

b) 

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+ab< bc+ab\)

\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Leftrightarrow\frac{a}{a+c}< \frac{b}{b+d}\)

\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Leftrightarrow\frac{d}{b+d}< \frac{c}{a+c}\)

\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

từ (1) và (2)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)

A B C I H K E F

a,*  Xét tam giác ABI và tam giác ACI có :

           cạnh AI chung

           góc BAI = góc CAI ( vì AI là phân giác góc A )

           AB = AC 

Do đó : tam giác ABI = tam giác ACI ( c.g.c )

\(\Rightarrow\)IB = IC ( cạnh tương ứng ) ( 1 )

* Vì AB = AC nên tam giác ABC cân tại A :

=> góc B = góc C 

Xét hai tam giác vuông BHI và tam giác vuông CKI có :

       góc BHI = góc CKI = 90độ 

        IB = IC ( theo ( 1 ) )

       góc B = góc C  ( theo chứng minh trên )

Do đó : tam giác BHI = tam giác CKI ( cạnh huyền - góc nhọn )

=> IH = IK ( cạnh tương ứng )

b,Xét tam giác HIE và tam giác KIF có :

            góc IHE = góc IKF = 90độ

            IH = IK  ( theo câu a )

            góc HIE = góc KIF( đối đỉnh )

Do đó : tam giác HIE = tam giác KIF ( g.c.g )

=> IE = IF ( cạnh tương ứng )

=> tam giác IEF cân tại I

=> góc IEF = góc IFE = \(\frac{180^0-\widehat{EIF}}{2}\)(2)

 Ta lại có : IH = IK 

=> tam giác IHK cân tại I

=> góc IKH = góc IHK = \(\frac{180^0-\widehat{HIK}}{2}\) (3)

mà góc HIK = gócEIF (4)

Từ (2) , (3) và (4) suy ra : 

góc IEF = góc IFE = góc IKH = góc IHK 

mà góc IEF = góc IKH ở vị trí so le trong

=>  HK // EF .

Học tốt

13 tháng 8 2020

A B C I H K 1 2 3 4 E F N

Vì AB = AC => tam giác ABC cân tại A 

=> <B = <C

Vì <AHI = <AKI (= 90o)

mà <HAI = <KAI 

=> <AHI - <HAI = <AKI - <KAI

=> I2 = I3 

Xét tam giác vuông AHI và tam giác vuông AKI có : 

+ <HAI = <KAI (gt)

+) <I2 = I3 (cmt)

+) AI chung

=> \(\Delta AHI=\Delta AKI\)(g.c.g)

=> IH = IK (cạnh tương ứng)

Xét tam giác ABI = tam giác ACI có 

+) AB = AC

+) <BAI = <CAI

+) AI chung

=> tam giác ABI = tam giác ACI (c.g.c)

=> BI = CI (cạnh tương ứng)

b) Kéo dai AI sao cho AI giao EF tại N

Xét tam giác HIE và tam giác KIF có : 

+) <IHE = <IKF (= 90o)

+) <HIE = <KIF (đối đỉnh)

+) HI = IK (câu a)

=> tam giác HIE = tam giác KIF (g.c.g)

=> HE = KF 

Lại có AH = AK (vì AB = AC ; BH = CK => AB - BH = AC - CK => AH = AK)

=> AH + HE = AK + KF

=> AE = AF

=> tam giác AEF cân tại A => <E = <F

Trong tam giác AEF có <A + <E + <F = 180o 

=> <A + 2<F = 180o (Vì <E = <F)

=> <F = (180o - <A) : 2 (1)

Vì AH = AK

=> Tam giác AHK cân tại A

=> <AHK = <AKH

Trong tam giác AHK có

<A + <AHK + <AKH = 180o

=> <A + 2<AKH = 180o (Vì <AHK = <AKH)

=> <AKH = (180o - A)/2 (2)

Từ (1) (2) => <AKH = <F

=> HK//EF (2 góc đồng vị bằng nhau)