A=3+32+33+34+...+3300
B=5+52+53+54+...+5200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải
tổng số phần bằng nhau là :
1+3= 4 ( phần )
số tuổi của con là :
36:4*1= 9 ( tuổi )
số tuổi của mẹ là :
36-9 = 27 ( tuổi )
đáp số :...
Tổng số phần bằng nhau là :
1 + 3 = 4 ( phần )
Gía trị 1 phần hay tuổi con là :
36 : 4 = 9 ( tuổi )
tuổi mẹ là :
36 - 9 = 27 ( tuổi )
Đáp số : mẹ : 27 tuổi
con : 9 tuổi
sơ đồ bạn tự vẽ nha
a) Dễ dàng thấy a = 9 và b = 1 ( vì nếu a khác 9 thì vô lí và số bị trừ có 4 chữ số ). Vậy ta có \(\overline{1cc1}-\overline{91c}=91\).
Mà 1 - c = 1 với không nhớ nên c = 0.
Vậy a = 9; b = 1 và c = 0.
b) Dễ dàng thấy a = 1 ( a khác 0 và nếu a khác 1 thì sẽ vô lí )
Hơn nữa ta có b > 4 và d = 0 hoặc 5 ( theo dấu hiệu chia hết cho 5 ).
Ta có :\(\overline{b1d}\div5=\overline{1bc}\)
Lại có b > 5 vì nếu b = 5 thì hàng đầu đúng nhưng hàng sau phải có b = 0 ( vô lí )
Như vậy b không chia hết cho 5.
Ta phải có b / 5 = 1 ( dư b - 5 ), suy ra [ ( b - 5 ) * 10 + 1 ] / 5 = 10 + b ( dư 1 )
( b * 10 - 41 ) / 5 = 10 + b ( dư 1 )
Vậy b chẵn ( vì nếu b lẻ thì chữ số tận cùng là 6 nên vô lí )
Vậy b = 6 hoặc 8. Thử hai số trên, ta thấy không số nào thích hợp.
Vậy không có giá trị nào của a; b và c sao cho biểu thức trên thích hợp.
[1234+2345]*[a:1-a*1]
= [1234+2345]*[a-a]
= [1234+2345] * 0
= 0
\(B=n^4-27n^2+121\)
\(B=n^4+22n^2+121-49n^2\)
\(B=\left(n^2+11\right)^2-49n^2\)
\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)
Vì n là số tự nhiên => \(n^2+11+7n>11\)
Để B là số nguyên tố
=> \(n^2-7n+11=1\)
\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(A=4x^2-12x+9-\left(x^2+5x-x-5\right)+2\)
\(A=4x^2-12x+9-x^2-4x+5+2\)
\(A=3x^2-12x+16\)
\(A=3\left(x^2-4x+4\right)\)
\(A=3\left(x-2\right)^2\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow x=2\)
\(A=\left(2x-3\right)^2-\left(x-1\right)\left(x+5\right)+2\)
\(=4x^2-12x+9-\left(x^2+4x-5\right)+2\)
\(=4x^2-12x+9-x^2-4x+5+2\)
\(=3x^2-16x+16\)
\(=3\left(x^2-\frac{16}{3}x+16\right)\)
\(=3\left(x^2-2\cdot\frac{8}{3}\cdot x+\frac{64}{9}+\frac{80}{9}\right)\)
\(=3\left(x-\frac{8}{3}\right)^2+\frac{80}{3}\ge\frac{80}{3}\)
dấu = xảy ra \(\Leftrightarrow x-\frac{8}{3}=0\)
\(\Leftrightarrow x=\frac{8}{3}\)
vậy...
\(A=3+3^2+3^3+3^4+...+3^{300}\)
\(3A=3^2+3^3+3^4+3^5+...+3^{301}\)
\(2A=3^{301}-3\)
\(A=\frac{3^{301}-3}{2}\)
\(B=5+5^2+5^3+5^4+...+5^{200}\)
\(5B=5^2+5^3+5^4+5^5+...+5^{201}\)
\(4B=5^{201}-5\)
\(B=\frac{5^{201}-5}{4}\)