K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

Chiều rộng mảnh bìa 

\(\frac{3}{4}\cdot\frac{4}{5}=\frac{3}{5}m\)   

Chu vi mảnh bìa 

\(\left(\frac{3}{4}+\frac{3}{5}\right)\cdot2=\frac{27}{10}m\)   

Diện tích 

\(\frac{3}{4}\cdot\frac{3}{5}=\frac{9}{20}m2\)

29 tháng 10 2020

8x3 - 50x = 0

⇔ 2x( 4x2 - 25 ) = 0

⇔ 2x( 2x - 5 )( 2x + 5 ) = 0

⇔ 2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0

⇔ x = 0 hoặc x = ±5/2

( x + 3 )2 = 9( 2x - 1 )2

⇔ ( x + 3 )2 - 32( 2x - 1 )2 = 0

⇔ ( x + 3 )2 - [ 3( 2x - 1 ) ]2 = 0

⇔ ( x + 3 )2 - ( 6x - 3 )2 = 0

⇔ ( x + 3 - 6x + 3 )( x + 3 + 6x - 3 ) = 0

⇔ ( -5x + 6 ).7x = 0

⇔ -5x + 6 = 0 hoặc 7x = 0

⇔ x = 6/5 hoặc x = 0

29 tháng 10 2020

\(8x^3-50x=0\)   

\(2x\left(4x^2-25\right)=0\)   

\(\orbr{\begin{cases}2x=0\\4x^2-25=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x^2=\frac{25}{4}\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{25}{4}}\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\pm\frac{5}{2}\end{cases}}\)   

\(\left(x+3\right)^2=9\left(2x-1\right)^2\)   

\(x^2+6x+9=9\left(4x^2-4x+1\right)\)   

\(x^2+6x+9=36x^2-36x+9\)    

\(0=36x^2-36x+9-x^2-6x-9\)   

\(0=35x^2-42x\)   

\(35x^2-42x=0\)   

\(7x\left(5x-6\right)=0\)   

\(\orbr{\begin{cases}7x=0\\5x-6=0\end{cases}}\)   

\(\orbr{\begin{cases}x=0\\x=\frac{6}{5}\end{cases}}\)

29 tháng 10 2020

(-2,5 . 0,24 . 0,4) - [0,125 . 4,5 . (-8)]

= (-2,5 . 0,4 . 0,24) - [0,125 . (-8) . 4,5]

= (-1 . 0,24) - [(-1) . 4,5]

= -1 . (0,24 - 4,5)

= -1 . (-4,26)

= 4,26

29 tháng 10 2020

Nhận xét: Phương trình bậc 3 luôn có ít nhất 1 nghiệm thực .

Để phương trình bậc 3 có đúng 2 nghiệm phân biệt thì phương trình bậc 3 phải tách được thành: 

( x - a) (x - b)2 với a khác b

Đối với bài trên chúng ta làm như sau: 

\(x^3-2mx^2+\left(m^2+5m\right)x-2m^2-2m-8=0\)

<=> \(\left(x^3-8\right)-\left(2mx^2-5mx+2m\right)+\left(m^2x-2m^2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2x+4\right)-m\left(2x-1\right)\left(x-2\right)+m^2\left(x-2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2x+4-2mx+m+m^2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2\left(1-m\right)x+4+m+m^2\right)=0\)

<=> \(\left(x-2\right)\left[\left(x^2+2\left(1-m\right)x+\left(1-m\right)^2\right)+4+m+m^2-\left(1-m\right)^2\right]=0\)

<=> \(\left(x-2\right)\left[\left(x+1-m\right)^2+4+m+m^2-\left(1-m\right)^2\right]=0\)

Phương trình ba đầu có 2 nghiệm phân biệt 

đk cần là: \(4+m+m^2-\left(1-m\right)^2=0\Leftrightarrow3+3m=0\Leftrightarrow m=-1\)

Khi đó phương trình có hai nghiệm 2 và -2 khác nhau

Vậy m = - 1 thỏa mãn

( Lớp 8 chưa học đen ta nên giải hơi lủng)

29 tháng 10 2020

\(a^3-3a+3b-b^3=\left(a^3-b^3\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+b^2+ab-3\right)\)

\(x^2-2014x+2013=x^2-2013x-x+2013=x\left(x-2013\right)-\left(x-2013\right)=\left(x-2013\right)\left(x-1\right)\)

29 tháng 10 2020

a3 - 3a + 3b - b3

= ( a3 - b3 ) - ( 3a - 3b )

= ( a - b )( a2 + ab + b2 ) - 3( a - b )

= ( a - b )( a2 + ab + b2 - 3 )

x2 - 2014x + 2013

= x2 - 2013x - x + 2013

= x( x - 2013 ) - ( x - 2013 )

= ( x - 2013 )( x - 1 )

29 tháng 10 2020

\(x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3=\left(5-3\right)^3=2^3=8\)

29 tháng 10 2020

\(x^3-9x^2+27x-27\)   

\(=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^3-3^3\)    

\(=\left(x-3\right)^3\)    

\(x=5\)   

\(\Rightarrow\left(5-3\right)^3\)   

\(=2^3\)   

\(=8\)

29 tháng 10 2020

x3 - 2x2 - 8x

= x( x2 - 2x - 8 )

= x( x2 - 4x + 2x - 8 )

= x[ x( x - 4 ) + 2( x - 4 ) ]

= x( x - 4 )( x + 2 )

29 tháng 10 2020

\(x^3-2x^2-8x=x\left(x^2-2x-8\right)=x\left(x^2-2x+1-9\right)=x\left[\left(x-1\right)^2-3^2\right]=x\left(x-4\right)\left(x+2\right)\)