Chứng minh rằng 2 tia phân giác của 2 góc trong cùng phía của 2 đường thẳng song song tạo với đường thẳng thứ ba tạo nhau 1 góc vuông
Giúp mk với nhé. Mai mk cần rùi. Tks mn nhìu <3<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(ab+bc+ca=2020\)
\(\Rightarrow a^2+2020=a^2+ab+bc+ca\)
\(=\left(a^2+ab\right)+\left(bc+ca\right)=a\left(a+b\right)+c\left(a+b\right)\)
\(=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có: \(b^2+2020=\left(b+a\right)\left(b+c\right)\)
\(c^2+2020=\left(c+b\right)\left(c+a\right)\)
\(\Rightarrow\frac{a^2-bc}{a^2+2020}+\frac{b^2-ca}{b^2+2020}+\frac{c^2-ab}{c^2+2020}\)
\(=\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ca}{\left(b+a\right)\left(b+c\right)}+\frac{c^2-ab}{\left(c+a\right)\left(c+b\right)}\)
\(=\frac{\left(a^2-bc\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(b^2-ca\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{\left(c^2-ab\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a^2-bc\right)\left(b+c\right)+\left(b^2-ca\right)\left(c+a\right)+\left(c^2-ab\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a^2b+a^2c-b^2c-bc^2\right)+\left(b^2c+b^2a-c^2a-ca^2\right)+\left(c^2a+c^2b-a^2b-ab^2\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{a^2b+a^2c-b^2c-bc^2+b^2c+b^2a-c^2a-ca^2+c^2a+c^2b-a^2b-ab^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{0}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)( đpcm )
Ta có
\(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
\(b^2+ab+bc+ac=\left(a+b\right)\left(b+c\right)\)
\(c^2+ab+bc+ac=\left(a+c\right)\left(b+c\right)\)
Thay ab + bc + ac = 2020 vào biểu thức \(\frac{a^2-bc}{a^2+2020}+\frac{b^2-ca}{b^2+2020}+\frac{c^2-ab}{c^2+2020}\)có
\(\frac{a^2-bc}{a^2+2020}+\frac{b^2-ca}{b^2+2020}+\frac{c^2-ab}{c^2+2020}\)
\(=\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ca}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(b+c\right)\left(a+c\right)}\)
\(=\frac{\left(a^2-bc\right)\left(b+c\right)+\left(b^2-ca\right)\left(a+c\right)+\left(c^2-ab\right)\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\frac{a^2b+a^2c-b^2c-bc^2+ab^2+b^2c-a^2c-ac^2+ac^2-a^2b+bc^2-ab^2}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(=\frac{0}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=0\)