K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2019

viết đề bài như thế bố ai hiểu đc

27 tháng 1 2019

Vì khi ta làm đúng bài toán.

27 tháng 1 2019

ví dụ có 1 quả táo thêm 1 quả nữa thì sẽ có 2 quả táo =>1 quả táo + 1 quả táo=2 quả táo

=>1+1=2

27 tháng 1 2019

Ta có:\(\hept{\begin{cases}x^3+2y=1\\y^3+2x=-1\end{cases}}\)

\(\Rightarrow\left(x^3+y^3\right)+\left(2y+2x\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+2\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2+2\right)=0\)

đến đây dễ nha.

27 tháng 1 2019

Forever Miss You , bạn giải tiếp đi ^^

27 tháng 1 2019

\(\frac{a}{b}+\frac{b}{a}\left(a,b\ne0\right)\)

\(\ge\frac{2b}{b}+\frac{b}{2b}=2+\frac{1}{2}=\frac{5}{2}\)(đpcm)

Dấu = xảy ra khi a = 2b <=> Min = 5/2

27 tháng 1 2019

tth: thêm hộ cái điều kiện a,b dương

Đặt \(\frac{a}{b}=x\) 

Ta có: \(a\ge2b\)

\(\Rightarrow\frac{a}{b}\ge2\)

\(\Leftrightarrow x\ge2\)

\(\frac{a}{b}+\frac{b}{a}=x+\frac{1}{x}=\frac{1}{4}x+\frac{1}{x}+\frac{3}{4}x\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2.\sqrt{\frac{1}{4}.x.\frac{1}{x}}+\frac{3}{4}x\ge2.\frac{1}{2}+\frac{3}{4}.2=1+\frac{3}{2}=\frac{5}{2}\left(v\text{ì}x\ge2\right)\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{4}x=\frac{1}{x}\\x=2\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=4\\x=2\end{cases}}\Leftrightarrow}x=2\Leftrightarrow\frac{a}{b}=2\Leftrightarrow a=2b\)

9 tháng 5 2020

Xét hệ phương trình \(\hept{\begin{cases}x^3-y^3-15y-14=3\left(2y^2-x\right)\left(1\right)\\4x^3+6xy+15x+3=0\left(2\right)\end{cases}}\)

Ta có: \(\left(1\right)\Leftrightarrow x^3+3x=y^3+15y+6y^2+14\)\(\Leftrightarrow x^3+3x=y^3+6y^2+12y+8+3y+6\)

\(\Leftrightarrow x^3+3x=\left(y+2\right)^3+3\left(y+2\right)\Leftrightarrow x=y+2\)(*)

Từ (2) và (*), ta có hệ phương trình: \(\hept{\begin{cases}x=y+2\\4x^3+6xy+15x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x\left(x-2\right)+15x+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2=y\\4x^3+6x^2+3x+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2=y\\8x^3+12x^2+6x+6=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^3=-5\\x-2=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1-\sqrt[3]{5}}{2}\\y=\frac{-5-\sqrt[3]{5}}{2}\end{cases}}\)

Vậy hệ phương trình có một nghiệm duy nhất là \(\left(x;y\right)=\left(\frac{-1-\sqrt[3]{5}}{2};\frac{-5-\sqrt[3]{5}}{2}\right)\)