Chứng minh nếu ac-b^2 thì a^2+b^2/b^2+c^2=a/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co cong thuc sau (co the chung minh bang quy nap)
\(1^4+2^4+3^4+...+n^4=\frac{n\left(2n+1\right)\left(3n^2+3n-1\right)\left(n+1\right)}{30}\)
\(x+\frac{4}{12}-1+\frac{2}{3}=-2+\frac{3}{4}\)
=> \(x+\frac{4}{12}-\frac{12}{12}+\frac{8}{12}=-2+\frac{3}{4}\)
=> \(x+\frac{4-12+8}{12}=\frac{-8}{4}+\frac{3}{4}\)
=> \(x+0=-\frac{5}{4}\)
=> x = -5/4
Cái này chị quên cách áp dụng dãy tỉ số rồi, đặt k cho dễ nhé =)).
Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\left(a,b,c,d\ne0\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\left(k\in Q\right)\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{ac}{bd}=\frac{bk.dk}{bd}=k.k=k^2\\\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{\left(b^2+d^2\right)k^2}{b^2+d^2}=k^2\end{cases}}\)
=> \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(cùng bằng k2)
G là giao điểm của 2 đường trung tuyến BD và CE
Suy ra : G là trọng tâm tam giác ABC
Suy ra :
GD = 1/3 BD = 1/3 x 24 = 8 ( cm )
GE = 1/3 CE = 1/3 x 45 = 15 ( cm )
Xét tam giác ABC có :
E là trung điểm AB ( trung tuyến CE )
D là trung điểm AC ( trung tuyến BD )
Suy ra : ED là đường trung bình của tam giác ABC
Suy ra ED : = 1/2 x BC = 1/2 x 34 = 17 ( cm )
Vậy GD = 8 cm
GE = 15 cm
ED = 17 cm
a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)
Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)
Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)
Vậy Amin = 8 - 11 = - 3 <=> x = 0
b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)
Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)
mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\) <=> x = 1
Ta có : \(\frac{1+2x}{36}=\frac{1+4x}{48}=\frac{1+6x}{6y}\Rightarrow\frac{2+4x}{72}=\frac{1+4x}{48}=\frac{1+6x}{6y}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{1+2x}{36}=\frac{2+4x}{72}=\frac{1+4x}{48}=\frac{1+6x}{6y}=\frac{2+4x-1-4x}{72-48}=\frac{1}{24}\)
=> \(\frac{1+4x}{48}=\frac{1}{24}\Rightarrow\frac{1+4x}{48}=\frac{2}{48}\Rightarrow1+4x=2\Rightarrow x=0,25\)
\(\frac{1+2x}{36}=\frac{1+4x}{48}=\frac{1+6x}{6x}\Rightarrow\frac{2+4x}{72}=\frac{1+4x}{48}=\frac{1+6x}{6y}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{1+2x}{36}=\frac{2+4x}{72}=\frac{1+4x}{48}=\frac{1+6x}{6y}=\frac{2+4x-1-4x}{72-48}=\frac{1}{24}\)
\(\Rightarrow\frac{1+4x}{48}=\frac{1}{24}\Rightarrow\frac{1+4x}{48}=\frac{2}{48}\Rightarrow1+4x=2\Rightarrow x=0,25\)
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)
Là ac = b2 hay ac - b2 vậy ?