K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

\(a,\frac{7}{x}-\frac{x}{x+6}+\frac{36}{x^2-6x}\)

\(=\frac{7}{x}-\frac{x}{x+6}+\frac{36}{x\left(x-6\right)}\)

\(=\frac{7\left(x-6\right)\left(x+6\right)-x\left(x-6\right)+36\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)}\)

\(=\frac{7\left(x^2-6\right)-x^2+6x+36x+216}{x\left(x^2-6\right)}\)

\(=\frac{7x^2-42-x^2+6x+36x+216}{x\left(x^2-6\right)}\)

\(=\frac{6x^2+42x+216}{x\left(x^2-6\right)}\)

\(=\frac{6\left(x^2+7x+36\right)}{x\left(x^2-6\right)}\)

1 tháng 12 2019

Đề sai nhé, phải là như này nè :

\(b,\frac{1}{x^2-x+1}-\frac{1}{x^2+x+1}-\frac{2x}{x^4-x^2+1}+\frac{4x^3}{x^8-x^4+1}\)

\(=\frac{x^2+x+1-\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)\(-\frac{2x}{x^4-x^2+1}+\frac{4x^3}{x^8-x^4+1}\)

\(=\frac{x^2+x+1-x^2+x-1}{x^4+x^2+1}\)\(-\frac{2x}{x^4-x^2+1}+\frac{4x^3}{x^8-x^4+1}\)

\(=\frac{2x}{x^4+x^2+1}-\frac{2x}{x^4-x^2+1}+\frac{4x^3}{x^8-x^4+1}\)

\(=\frac{2x\left(x^4-x^2+1\right)-2x\left(x^4+x^2+1\right)}{\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)}+\frac{4x^3}{x^8-x^4+1}\)

\(=\frac{2x^5-2x^3+2x-2x^5-2x^3-2x}{x^8-x^4+1}+\frac{4x^3}{x^8-x^4+1}\)

\(=-\frac{4x^3}{x^8-x^4+1}+\frac{4x^3}{x^8-x^4+1}=0\)

1 tháng 12 2019

Cho \(\Delta ABC\)Cân tại \(A\)sao lại có \(AB=10cm\)và \(AC=15cm\)thế em ? 

Bạn Cao Kỳ Duyên : Đề sai kìa bạn !

Tam giác ABC cân tại A mà sao AB=10cm, AC=15cm. Như vậy AB đâu bằng AC đâu.

Khái niệm của tam giác cân là : Tam giác cân là tam giác có hai cạnh bằng nhau. Trong một tam giác cân hai góc  đáy bằng nhau. Nếu một tam giác có hai góc bằng nhau thì là tam giác cânTam giác vuông cân là tam giác vuông có hai cạnh góc vuông bằng nhau .

1 tháng 12 2019

a) \(\frac{3x^2+5x+1}{x^3-1}-\frac{1-x}{x^2+x+x}-\frac{3}{x-1}\)

\(=\frac{3x^2+5x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(1-x\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{3x^2+5x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{1-x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2+3x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{3x^2+5x+1-1+x^2-3x^2-3x-3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x^2+2x-3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{x^2+3x-x-3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x+3}{x^2+x+1}\)

1 tháng 12 2019

\(a,\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)

\(=\frac{1}{3x-2}-\frac{1}{3x+2}+\frac{3\left(x-2\right)}{\left(3x+2\right)\left(3x-2\right)}\)

\(=\frac{3x+2-\left(3x-2\right)+3\left(x-2\right)}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)

\(=\frac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\frac{1}{3x+2}\)

1 tháng 12 2019

\(b,\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x}{x^2-9}\)

\(=\frac{18}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}-\frac{3}{\left(x-3\right)\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{18-3\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)

\(=\frac{18-3x-9-x^2+3x}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-x^2+9}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}=-\frac{1}{x-3}\)

Ta có : n^3 - n^2 + n - 1 = n^2(n - 1) + (n - 1) = (n^2 + 1)(n - 1).
Để n^3 - n^2 + n - 1 là số nguyên tố thì ta có 2 TH :
TH1 : n^2 + 1 = 1 ; n - 1 nguyên tố => không có n thỏa mãn.
TH2 : n^2 + 1 nguyên tố, n - 1 = 1 => n = 2 (chọn)
Vậy n = 2 để n^3 - n^2 + n - 1 nguyên tố

30 tháng 11 2019

Đặt A=x^4-x^3+3x^2-2x+2

=(x^4+3x^2+2)-(x^3+2x)

=(x^4+x^2+2x^2+2)-x(x^2+2)

=(x^2+1)(x^2+2)-x(x^2+2)

=(x^2+2)(x^2-x+1)

Ta có x^2+2>=2>0;

x^2-x+1=(x^2-x+1/4)+3/4 =(x-1/2)^2+3/4>=3/4>0 

=> A>0  

30 tháng 11 2019

1) ĐKXĐ: x \(\ne\)1; x \(\ne\)0

Ta có: A = \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6x}{x\left(x-1\right)}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{4x^2-3x+17+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{12}{x^2+x+1}\)

b) Ta có: B = \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)

B = \(\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)

B = \(\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x+3y\right)\left(x-3y\right)}\)

B = \(\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B =  \(\frac{x^2+6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{x+3y}{x\left(x-3y\right)}\)

30 tháng 11 2019

\(A=\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x\left(1-x\right)}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}-\frac{6x}{x\left(x-1\right)}\)

\(A=\frac{x\left(4x^2-3x+17\right)+x\left(x-1\right)\left(2x-1\right)-6x\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4x^3-3x^2+17x+x\left(2x^2-x-2x+1\right)-6x^3-6x^2-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{\left(4x^3+2x^3-6x^3\right)-3x^2-3x^3-6x^2+17x+x-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x^2+12x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\frac{-12}{x^2+x+1}\)

1 tháng 12 2019

x^2-x+1 2x^4-3x^3+5x^2-4x+3 2x^2-x+2 2x^4-2x^3+2x^2 -x^3+3x^2-4x+3 -x^3+x^2-x 2x^2-3x+3 2x^2-2x+2 -x+1

Vậy (2x4-3x3+5x2-4x+3):(x2-x+1) = 2x2 -x + 2 dư -x+1

1 tháng 12 2019

Giả sử:

\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)

Từ đây ta có:

\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)

Ta chứng minh

\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)

Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó