K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2023

`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`

Vì `(x+1/2)^2 >= 0` với mọi `x`

  `=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`

 `=>` Biểu thức Min `=3/4<=>x=-1/2`

_____________

`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`

  Vì `(x+1)^2 >= 0` với mọi `x`

    `=>(x+1)^2-12 >= -12` với mọi `x`

 `=>` Biểu thức Min `=-1/2<=>x=-1`

28 tháng 7 2023

`I=3x-9x^{2}-1`

`I=-(9x^2-3x+1)`

`I=-(9x^2-3x+1/4+3/4)`

`I=-(3x-1/2)^{2}-3/4`

Vì `-(3x-1/2)^2 <= 0` với mọi `x`

  `=>-(3x-1/2)^2-3/4 <= -3/4` với mọi `x`

  Hay `I <= -3/4` với mọi `x`

   `=>I_{mi n}=-3/4 <=>x=1/6`

28 tháng 7 2023

\(\left(x+2\right)^2=\left(2x-1\right)^2\\ \Leftrightarrow\left(x+2\right)^2-\left(2x-1\right)^2=0\\\Leftrightarrow\left[x+2-\left(2x-1\right)\right]\left[x+2+2x-1\right]=0\\ \Leftrightarrow\left(x+2-2x+1\right)\left(x+2+2x-1\right)=0\\ \Leftrightarrow\left(-x+3\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)

28 tháng 7 2023

\(\left(x+2\right)^2=\left(2x-1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-1\\x+2=-\left(2x-1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2x=-1-2\\x+2=-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=-3\\x+2x=1-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{3}\end{matrix}\right.\)

28 tháng 7 2023

mik lm nếu bn like =)

28 tháng 7 2023

Bài 4:
a) Ta có tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc CAE + góc BAC = 90 độ, tức là EC vuông góc với BC.

b) Vì tam giác ABC vuông cân tại A, nên góc BAC = 45 độ. Vì tam giác ACE vuông cân tại E, nên góc CAE = 45 độ. Từ đó suy ra góc BAE = góc BAC + góc CAE = 45 độ + 45 độ = 90 độ. Do đó, tứ giác ABCE là tứ giác vuông.

Bài 5:
a) Gọi K là giao điểm của đường thẳng AM và BH. Ta cần chứng minh góc BAK = góc CAK.
Vì CM = CA, ta có góc CMA = góc CAM. Vì đường thẳng AM song song với CA, nên góc CMA = góc KAB (do AB cắt đường thẳng AM tại I). Từ đó suy ra góc CAM = góc KAB.
Vì AH là đường cao, nên góc BAH = góc CAH. Từ đó suy ra góc BAK = góc CAK.
Vậy, AM là phân giác của góc BAH.

b) Ta có AB + AC = AB + AH + HC = BH + HC > BC (theo bất đẳng thức tam giác).
Vậy, luôn luôn có AB + AC < AH + BC.

28 tháng 7 2023

bài 1 :

a) Ta có MQ//NP (theo giả thiết).

Chứng minh MN = PQ:
Vì MN//PQ và MQ//NP, ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).

Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM

Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP

Từ đó suy ra: MN = PQ.

Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ

Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP

Từ đó suy ra: MQ = NP.

b) Ta có MN = PQ (theo giả thiết).

Chứng minh MQ//NP:
Giả sử MQ không // NP. Khi đó, MQ và NP sẽ cắt nhau tại một điểm O.

Vì MN//PQ và MQ//NP, nên ta có hai tam giác MNP và QMQ' đồng dạng (theo nguyên lý đồng dạng của tam giác có hai cặp góc tương đồng bằng nhau).

Do đó, ta có tỉ số đồng dạng giữa các cạnh của hai tam giác là:
MN/MQ = NP/QM

Từ đó suy ra: MN/MQ = NP/NP

Vì MQ//NP, nên ta có tỉ số đồng dạng:
MN/MQ = NP/NP

Từ đó suy ra: MN = PQ.

Điều này mâu thuẫn với giả thiết MN = PQ (đã cho). Vậy giả sử MQ không // NP là sai.

Do đó, ta kết luận rằng MQ//NP.

Chứng minh MQ = NP:
Vì MQ//NP, nên ta có tỉ số đồng dạng:
MQ/MN = NP/PQ

Vì MN = PQ (đã chứng minh ở trên), nên ta có tỉ số đồng dạng:
MQ/MN = NP/NP

Từ đó suy ra: MQ = NP.

bài 2 :

a) Ta có MN = MQ và góc M = 50 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc N = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
50 độ + góc N + 90 độ + góc N = 360 độ

Simplifying the equation:
140 độ + 2góc N = 360 độ

Trừ 140 độ từ hai phía:
2góc N = 220 độ

Chia cho 2:
góc N = 110 độ

Vậy số đo góc MQN là 110 độ.

b) Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
góc M + 110 độ + 90 độ + góc M = 360 độ

Simplifying the equation:
2góc M + 200 độ = 360 độ

Trừ 200 độ từ hai phía:
2góc M = 160 độ

Chia cho 2:
góc M = 80 độ

Vậy số đo góc MQP là 80 độ.

c) Để chứng minh MP vuông góc với NQ, ta cần chứng minh rằng góc MPN + góc NQP = 90 độ.

Ta đã biết góc P = 90 độ. Vì tứ giác MNPQ là tứ giác cân (hai cạnh bằng nhau), nên góc M = góc Q.

Vì tổng các góc trong một tứ giác bằng 360 độ, ta có:
góc M + góc N + góc P + góc Q = 360 độ

Thay giá trị vào, ta có:
góc M + góc N + 90 độ + góc M = 360 độ

Simplifying the equation:
2góc M + góc N = 270 độ

Vì góc M = góc Q, nên ta có:
2góc M + góc M = 270 độ

28 tháng 7 2023

\(A=n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

Tich trên là tích của 3 số tự nhiên liên tiếp

\(\left(n-1\right)n\left(n+1\right)⋮24\) khi đồng thời chia hết cho 3 và 8

+ C/m tích trên chia hết cho 3

Nếu \(n⋮3\Rightarrow A⋮3\)

Nếu n chia 3 dư 1 \(\Rightarrow n-1⋮3\Rightarrow A⋮3\)

Nếu n chia 3 dư 2 \(\Rightarrow n+1⋮3\Rightarrow A⋮3\)

\(\Rightarrow A⋮3\forall n\)

C/m tích trên chia hết cho 8

Do n là số tự nhiên lẻ

Nếu \(n=1\Rightarrow A=0⋮8\)

Nếu \(n\ge3\) => (n-1) và (n+1) chẵn

Đặt \(n=2k+1\left(k\ge1\right)\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)=\)

\(=2k\left(2k+1\right)\left(2k+2\right)=\left(4k^2+2k\right)\left(2k+2\right)=\)

\(=8k^3+8k^2+4k^2+4k=8\left(k^3+k^2\right)+4k\left(k+1\right)\)

Với k chẵn đặt \(k=2p\Rightarrow4k\left(k+1\right)=8p\left(2p+1\right)⋮8\)

\(\Rightarrow A=8\left(k^3+k^2\right)+8p\left(2p+1\right)⋮8\)

Với k lẻ đặt \(k=2p+1\Rightarrow4k\left(k+1\right)=4\left(2p+1\right)\left(2p+1+1\right)=\)

\(4\left(2p+1\right)2\left(p+1\right)=8\left(2p+1\right)\left(p+1\right)⋮8\)

\(\Rightarrow A⋮8\forall n\)

\(\Rightarrow A⋮3x8\forall n\Rightarrow A⋮24\forall n\)

 

28 tháng 7 2023

A B C D M E

\(MD\perp AB\) (gt)

\(AC\perp AB\) (gt)

=> MD//AC (1) \(\Rightarrow\widehat{BMD}=\widehat{C}\) (góc đồng vị)

Mà \(\widehat{B}=\widehat{C}\) (gt)

\(\Rightarrow\widehat{B}=\widehat{BMD}\) => tg BMD vuông cân tại D => MD=BD (2)

\(ME\perp AC\) (gt)

\(AB\perp AC\) (gt)

=> ME//AB (3)

C/m tương tự ta cũng có tg CME vuông cân tại E => ME=CE (4)

Từ (1) và (3) => ADME là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau)

=> MD = AE (5) và ME = AD (6)

Ta có

\(C_{ADME}=\left(MD+ME\right)x2\)

AE = AC-CE Từ (5) => MD=AC - CE Từ (4) => MD = AC - ME

\(\Rightarrow C_{ADME}=\left(AC-ME+ME\right)x2=2xAC\) không đổi

 

 

27 tháng 7 2023

 Bạn có ghi sai đề không vậy? Mình nghĩ đẳng thức cuối nó là \(z=\left(a-b+c\right)^2+8ca\)

 Khi đó theo nguyên lí Dirichlet, trong 3 số \(a,b,c\) sẽ tồn tại 2 số nằm cùng phía so với 0 (cùng lớn hơn 0 hoặc cùng bé hơn 0). Giả sử 2 số này là \(a,b\). Khi đó hiển nhiên \(ab>0\) (do a, b cùng dấu), từ đó suy ra \(x=\left(a-b+c\right)^2+8ab>0\) , đpcm.

28 tháng 7 2023

ko đâu bạn

đề bài thế nha