K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

3x^2-2x+1 3x^4-8x^3-10x^2+8x-5 x^2-2x-16/3 3x^4-2x^3+x^2 -6x^3-12x^2+8x-5 -6x^3+4x^2-2x -16x^2+10x-5 -16x^2+32/3x-16/3 -2/3x+1/3

Vậy 

  • (3x4-8x3-10x2+8x-5):(3x2-2x+1) = \(x^2-2x-\frac{16}{3}\)dư \(\frac{-2}{3}x+\frac{1}{3}\)
2 tháng 12 2019

x^2-1 x^4-2x^3+2x-1 x^2-2x+1 x^4-x^2 -2x^3+x^2+2x-1 -2x^3+2x x^2-1 x^2-1 0

2 tháng 12 2019

a) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x+4\right)\left(x-4\right)}{x\left(4-x\right)}\)

\(=\frac{\left(x+4\right)\left(x-4\right)}{-x\left(x-4\right)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+3x+x+3}{2\left(x+3\right)}\)

\(=\frac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\frac{\left(x+1\right)\left(x+3\right)}{2\left(x+3\right)}=\frac{x+1}{2}\)

c) \(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)

\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)

\(=\frac{2x\left(x-2\right)^2}{x\left(x+2\right)\left(x-2\right)}\)

\(=\frac{2x\left(x-2\right)}{x\left(x+2\right)}\)

\(=\frac{2x^2-4x}{x^2+2x}\)

d) \(\frac{x^3-x^2y+xy^2}{x^3+y^3}\)

\(=\frac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{x}{x+y}\)

1 tháng 12 2019

lười :)))))))))))

1 tháng 12 2019

did (ngu anh)

1 tháng 12 2019

\(N=-x\left(x+1\right)-2y^2=-x^2-x-2y^2\)

\(=-x^2-x-\frac{1}{4}+\frac{1}{4}-2y^2\)

\(=-\left(x+\frac{1}{2}\right)^2-2y^2+\frac{1}{4}\)

Vì \(-\left(x+\frac{1}{2}\right)^2\le0;-2y^2\le0\)

=> \(-\left(x+\frac{1}{2}\right)^2-2y^2+\frac{1}{4}\le\frac{1}{4}\)

=> \(N\le\frac{1}{4}\)

Dấu "=" xảy ra <=>  x = -1/2; y =0

Vậy max N = 1/4 tại x = -1/2 ; y = 0.

1 tháng 12 2019

P/s : sai đề , sửa thành tìm GTLN .

\(A=x-x^2-1\)

\(A=-\left(x^2-x+1\right)\)

\(A=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\ge\frac{-3}{4}\)

Dấu bằng xảy ra khi và chỉ khi\(x-\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy Max A = \(\frac{-3}{4}\)\(\Leftrightarrow x=\frac{1}{2}\)

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm ) 

GIÚP MÌNH NHA!1. Một căn phòng có nền hình chữ nhật với kích thước là 4,2m và 5,4m, có một cửa sổ hình chữ nhật kích thước là 1m và 1,6m và một cửa ra vào hình chữ nhật kích thước 1,2m và 2m. Ta coi một gian phòng đạt mức chuẩn về ánh sáng nếu diện tích các cửa bằng 20% diện tích nền nhà. Hỏi gian phòng trên có đạt mức chuẩn về ánh sáng hay không?2. Cho hình bình hành ABCD có AB = 2AD....
Đọc tiếp

GIÚP MÌNH NHA!

1. Một căn phòng có nền hình chữ nhật với kích thước là 4,2m và 5,4m, có một cửa sổ hình chữ nhật kích thước là 1m và 1,6m và một cửa ra vào hình chữ nhật kích thước 1,2m và 2m. Ta coi một gian phòng đạt mức chuẩn về ánh sáng nếu diện tích các cửa bằng 20% diện tích nền nhà. Hỏi gian phòng trên có đạt mức chuẩn về ánh sáng hay không?

2. Cho hình bình hành ABCD có AB = 2AD. Gọi E,F thứ tự là trung điểm của AB và CD.

 a) Các tứ giác AEFD, AECF là hình gì? Vì sao?

 b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

 c) Hình bình hành ABCD có thêm điều kiện gì thì EMFN là hình vuông?

3. Tứ giác ABCD có góc A = 120o, góc B = 100o, góc C - góc D = 20o. Tính số đo góc C và D? 

0