K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2023

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

20 tháng 8 2023

Công thức Heron được áp dụng cho tất cả tam giác nên nó cũng được áp dụng cho tam giác tù hoặc vuông.

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Đề thiếu. Bạn xem lại đề.

1. Cho bàn cờ 8x8 và 16 quân tốt (8 đen, 8 trắng) như trong hình. Hai người chơi, mỗi người cầm 1 loại quân (trắng/ đen). Quân trắng luôn đi trước, sau đó luân phiên. Biết rằng luật cờ vua được bảo toàn, tuy nhiên không được có sự ăn quân nào. Nếu bên nào đi 1 nước làm cho bên kia không thể thực hiện nước đi nào hợp lệ thì sẽ là người thắng cuộc. Hỏi có người chơi nào có chiến...
Đọc tiếp

1. Cho bàn cờ 8x8 và 16 quân tốt (8 đen, 8 trắng) như trong hình. Hai người chơi, mỗi người cầm 1 loại quân (trắng/ đen). Quân trắng luôn đi trước, sau đó luân phiên. Biết rằng luật cờ vua được bảo toàn, tuy nhiên không được có sự ăn quân nào. Nếu bên nào đi 1 nước làm cho bên kia không thể thực hiện nước đi nào hợp lệ thì sẽ là người thắng cuộc. Hỏi có người chơi nào có chiến lược thắng hay không? Nếu có, hãy mô tả và giải thích chiến lược đó.

                                                                                  

 2. Cho bàn cờ kích thước \(n\times n\). Hỏi 1 quân mã xuất phát từ 1 ô góc của bàn cờ đến góc đối diện thì cần ít nhất bao nhiêu nước đi? (Biết rằng quân mã đi như mã trong cờ vua)

                                                                               

 3. Tìm số quân tượng lớn nhất có thể đặt vào bàn cờ vua 8x8 sao cho không quân tượng nào tấn công quá 3 quân tượng khác (tượng tấn công như trong cờ vua, đi chéo vô hạn và không tấn công xuyên thấu, quan hệ tấn công là 2 chiều)

                                                                             

 4. Có bao nhiêu cách đặt 8 quân xe lên bàn cờ sao cho không có 2 quân xe nào ăn nhau và không có quân xe nào ở vị trí cấm được đánh dấu là vòng tròn màu xanh lục như hình vẽ: 

                                                                                  

 

11
18 tháng 8 2023

Em là thần đồng cờ vua nhưng bài này thì chịu

18 tháng 8 2023

?

 

17 tháng 8 2023

\(\left\{{}\begin{matrix}A\subset X\\X\subset B\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}X=\left\{1;2;3;4\right\}\\X=\left\{1;2;3;4;5\right\}\\X=\left\{1;2;3;4;5;6\right\}\\X=\left\{1;2;3;4;5;6;7\right\}\end{matrix}\right.\)

17 tháng 8 2023

x ϵ {1;2;3;4}

x ϵ {1;2;3;4;5}

x ϵ {1;2;3;4;5;6}

x ϵ {1;2;3;4;5;6;7}

17 tháng 8 2023

\(A=\left\{1;2;3;4\right\}\)

\(B=\left\{2;3;4;5;6\right\}\)

 mà \(X\subset\left(A\cap B\right)\)

\(\Rightarrow\left\{{}\begin{matrix}X=\left\{2;3;4\right\}\\X=\left\{2;3\right\}\\X=\left\{2\right\}vàX=\left\{3\right\}vàX=\left\{4\right\}\end{matrix}\right.\)

17 tháng 8 2023

a) \(BC^2=AB^2+AC^2=64+36=100\left(Pitago\right)\)

\(\Rightarrow BC=10\left(cm\right)\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{64}{10}=\dfrac{32}{5}\left(cm\right)\)

\(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}\left(cm\right)\)

\(AH^2=BH.CH=\dfrac{32}{5}.\dfrac{18}{5}=\dfrac{576}{25}\Rightarrow AH=\dfrac{24}{5}\left(cm\right)\)

b) \(AH^2=BH.CH=12.27=324\Rightarrow AH=18\left(cm\right)\)

\(BC=BH+HC=12+27=39\left(cm\right)\)

\(AB^2=BH.BC=12.39=468\Rightarrow AB=\sqrt[]{468}=6\sqrt[]{13}\left(cm\right)\)

\(AC^2=CH.BC=27.39=1053\Rightarrow AC=\sqrt[]{1053}=9\sqrt[]{13}\left(cm\right)\)