Một hình chữ nhật có chiều dài 150 m và chiều rộng 90 m được chia thành các hình vuông có diện tích bằng nhau. Tính độ dài cạnh hình vuông lớn nhất trong cách chia trên ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 5 = n + 3 + 2
Để (n + 5) ⋮ (n + 3) thì 2 ⋮ (n + 3)
⇒ n + 3 ∈ Ư(2) = {-2; -1; 1; 2}
⇒ n ∈ {-5; -4; -2; -1}
Lời giải:
Với $x,y$ là số tự nhiên thì:
$15x=5.3x\vdots 5; 20y=5.4y\vdots 5$
$\Rightarrow 15x+20y\vdots 5$
Mà $2021^{2022}\not\vdots 5$
$\Rightarrow$ không tồn tại $x,y$ tự nhiên thỏa mãn đề bài.
** Sửa đề: sao cho $p+2, p+10$ cũng là snt.
Lời giải:
Nếu $p$ chia hết cho $3$ thì do $p$ là snt nên $p=3$. Khi đó: $p+2=5; p+10=13$ cũng là snt (thỏa mãn)
Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k$ tự nhiên.
Khi đó: $p+2=3k+3=3(k+1)\vdots 3$. Mà $p+2>3$ với mọi $p$ nguyên tố.
$\Rightarrow p+2$ không là snt theo yêu cầu đề (loại)
Nếu $p$ chia $3$ dư $2$. Đătk $p=3k+2$ với $k$ tự nhiên.
Khi đó: $p+10=3k+2+10=3k+12=3(k+4)\vdots 3$. Mà $p+10>3$ nên $p+10$ không là snt theo yêu cầu đề (loại)
Vậy $p=3$ là đáp án duy nhất.
1) Xét △ABH vuông tại H có:
\(\sin\widehat{ABH}=\dfrac{AH}{AB}\)(tỉ số lượng giác)
⇒ \(AB=\dfrac{AH}{\sin\widehat{ABH}}=\dfrac{2,1}{\sin28^o}\approx4,5\left(m\right)\)
Vậy độ dài của mặt cầu trượt khoảng 4,5m.
2)
a) Xét △AMB có: A, M, B ∈ (O) (gt)
AB là đường kính của (O) (gt)
⇒ △AMB vuông tại M(ĐL về sự xác định của đường tròn)
Xét △AMB vuông tại M có: O là trung điểm AB(gt)
OH // AM (⊥ MB)
⇒ OH là đường trung bình của △AMB
⇒ H là trung điểm của MB (t/c)(đpcm)
Xét △NMB có: H là trung điểm của MB(cmt)
NH ⊥ MB(do N ∈ OH ⊥ MB)
⇒ NH là đường trung tuyến đồng thời cũng là đường cao trong △NMB
⇒ △NMB cân tại N(t/c △ cân)
⇒ NM = NB(t/c △ cân)
Xét △NMO và △NBO có:
ON chung
NM = NB(cmt)
OM = OB(= R)
⇒ △NMO = △NBO (c.c.c)
⇒ \(\widehat{NMO}=\widehat{NBO}=90^o\)
⇒ NM ⊥ MO
Mà OM = R
⇒ MN là tiếp tuyến của đường tròn (O; R) (đpcm)
b) Xét △MAB và △HBN có:
\(\widehat{AMB}=\widehat{BHN}=90^o\)
\(\widehat{MBA}=\widehat{HNB}\) (do cùng phụ với \(\widehat{NOB}\))
⇒ △MAB ∼ △HBN (g.g)(đpcm)
Bài 2:
1) Thay m = 1(TMĐK) vào hàm số y = (m - 2)x + m + 3 có
⇒ y = (1 - 2)x + 1 + 3
⇒ y = -x + 4
Xét (d) : y = -x + 4 có bảng
x | 0 | 4 |
y | 4 | 0 |
Điểm | (0; 4) | (4; 0) |
2) Để hai đường thẳng và cắt nhau tại một điểm trên trục tung thì
⇒\(\left\{{}\begin{matrix}m-2\ne5\\m+3=-1\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}m\ne7\\m=-2\end{matrix}\right.\)(TM) ⇒ m = -2
Vậy m = -2 thì hai đường thẳng (d)
và cắt nhau tại một điểm trên trục tung.
Bài 2:
1) Thay m = 1(TMĐK) vào hàm số y = (m - 2)x + m + 3 có
⇒ y = (1 - 2)x + 1 + 3
⇒ y = -x + 4
Xét (d) : y = -x + 4 có bảng
x | 0 | 4 |
y | 4 | 0 |
Điểm | (0; 4) | (4; 0) |
2) Để hai đường thẳng và cắt nhau tại một điểm trên trục tung thì
⇒\(\left\{{}\begin{matrix}m-2\ne5\\m+3=-1\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}m\ne7\\m=-2\end{matrix}\right.\)(TM) ⇒ m = -2
Vậy m = -2 thì hai đường thẳng (d)
và cắt nhau tại một điểm trên trục tung.
Gọi x (m) là độ dài cạnh hình vuông lớn nhất có thể chia (x ∈ ℕ*)
⇒ x = ƯCLN(150; 90)
Ta có:
150 = 2.3.5²
90 = 2.3².5
⇒ x = ƯCLN(150; 90) = 2.3.5 = 30
Vậy độ dài cạnh lớn nhất có thể chia là 30 m
Gọi x (m) là độ dài cạnh hình vuông lớn nhất có thể chia (x ∈ ℕ*)
⇒ x = ƯCLN(150; 90)
Ta có:
150 = 2.3.5²
90 = 2.3².5
⇒ x = ƯCLN(150; 90) = 2.3.5 = 30
Vậy độ dài cạnh lớn nhất có thể chia là 30 m