Tìm phương trình đường thẳng d: y = ax + b=. Biết đường thẳng đi qua điểm I(1;2) và tạo với hai tia ,Ox Oy một tam giác có diện tích bằng 4. Tìm \(A=a^2+b^2\)
hh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(TXĐ:D=R\)
\(pt\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)
\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}=3\sqrt{2}\left(1\right)\)
Chọn \(\hept{\begin{cases}\overrightarrow{u}=\left(1;1-2x\right)\\\overrightarrow{v}=\left(\sqrt{3}x+1;x+1\right)\\\overrightarrow{w}=\left(1-\sqrt{3}x;x+1\right)\end{cases}}\)\(\Rightarrow\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(3;3\right)\)
\(\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|=3\sqrt{2}\)(2)
Ta có: \(\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\le\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2+1^2}+\sqrt{\left(\sqrt{3}x+1\right)^2+\left(x+1\right)^2}\)
\(+\sqrt{\left(\sqrt{3}x-1\right)^2+\left(x+1\right)^2}\ge3\sqrt{2}\)
Dấu "=" xảy ra khi \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng
Từ (1) và (2) suy ra \(\overrightarrow{u};\overrightarrow{v};\overrightarrow{w}\)cùng hướng
\(\Leftrightarrow\exists k,l>0\hept{\begin{cases}\overrightarrow{v}=k.\overrightarrow{u}\\\overrightarrow{v}=l.\overrightarrow{w}\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{3}x+1=k.1;x+1=k\left(1-2x\right)\\\sqrt{3}x+1=l\left(1-\sqrt{3}x\right);x+1=l\left(x+1\right)\end{cases}}\)
Vậy x = 0
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)
Cộng theo từng vế
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)
\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow1\le x+y+z\)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)
Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Áp dụng bất đẳng thức cộng mẫu số :
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Vậy GTNN của \(A=\frac{1}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)
=> \(x+y+z\ge1\)
Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = y = z =1/3
Vậy min A = 1/2 <=> x = y = z = 1/3
Giải bất phương trình đúng không nhỉ? Lần sau ra đề nhớ ghi cái đề -_-
~~~~~~~~~~~~~~~ Bài làm ~~~~~~~~~~~~~~~~~
Bất pt được biến đổi tương đương thành:
\(\frac{11x^2+5x+6}{x\left(x^2+5x+6\right)}\le0\)
\(\Rightarrow\) Tập \(n_0\) \(S=\left(-\infty;-3\right)\)\(∪\) \(\left(-2;0\right)\)
Ta có:
\(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
\(\Rightarrow VT-VP=a^3+b^3+c^3+ab+bc+ca-6\ge a^3+b^3+c^3-ab-bc-ca\) (Giải thích:\(-6\ge-2\left(ab+bc+ca\right)\Rightarrow a^3+b^3+c^3+ab+bc+ca-6\ge a^3+b^3+c^3-ab-bc-ca\))
Ta lại có:
\(a^3+b^3+c^3-ab-bc-ca\ge\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}-\frac{\left(a+b+c\right)^2}{3}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{3}-3=0\)
\(\Rightarrow VT-VP\ge0\)
\(\Rightarrow P\ge6\)
Nếu có không đúng thì nhớ nói nhe chớ đừng có k sai tui giống mấy lần trước nhe :(
Bài ở dưới mình nhầm nhe.
Update
Ta có:
\(a^3+b^3+c^3\ge\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{3}\ge\frac{\left(a^2+b^2+c^2\right)\frac{\left(a+b+c\right)^2}{3}}{3}=a^2+b^2+c^2\)
\(\Rightarrow P\ge a^2+b^2+c^2+ab+bc+ca=\frac{a^2+b^2+c^2}{2}+\frac{\left(a+b+c\right)^2}{2}\ge\frac{\frac{\left(a+b+c\right)^2}{3}}{2}+\frac{9}{2}=6\)
\(\hept{\begin{cases}x+\sqrt{y^2-x^2}=12-y\left(1\right)\\x\sqrt{y^2-x^2}=12\left(2\right)\end{cases}}\)
\(Đkxđ:y^2\ge x^2\)
Từ: \(\left(1\right)\Rightarrow x^2+2x\sqrt{y^2-x^2}+y^2-x^2=144-24y+y^2\)
\(\Leftrightarrow x\sqrt{y^2-x^2}=144-24y\left(3\right)\)
Thay: \(x\sqrt{y^2-x^2}=12\) vào \(\left(3\right)\)ta được: \(y=5\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\Rightarrow\left\{\left(3;5\right),\left(4;5\right)\right\}\)
Ta có: \(T=3^2+4^2-5^2=0\)
Vậy giá trị cỉa biểu thức \(T=0\)
Chỉ lm bài thoii, hình bn tự vẽ nha !!!
\(a.\) Tứ giác \(BEDC\) có \(\widehat{BEC}=\widehat{BDC}=90^0\)
Suy ra tứ giác \(BEDC\) là tứ giác nội tiếp
Tam giác \(DBA\) vuông tại \(D\) có đường cao \(DL\) nên suy ra \(BD^2=BL.BA\)
\(b.\) Tứ giác \(ADEH\) có:
\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\) nên tứ giác \(ADEH\) nội tiếp
Từ đó \(\widehat{BAK}=\widehat{BDE}\)
Mà \(\widehat{BJK}=\widehat{BAK}\) ( 2 góc nội tiếp cùng chắn một cung )
Do đó \(\widehat{BJK}=\widehat{BDE}\)