Thực hiện phép tính : (3x-2)(x2-4x+5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.3\left(x^2-2x+1\right)-3x^2+15x-2=0\)
\(3x^2-6x+3-3x^2+15x-2=0\)
\(9x+1=0\)
\(x=-\frac{1}{9}\)
\(b.4x^2-12x+9=0\)
\(4x^2-6x-6x+9=0\)
\(2x\left(x-3\right)-3\left(x-3\right)=0\)
\(\left(2x-3\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=3\end{cases}}\)
\(c.\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
D = x - x2 + 3
D = - x2 + x + 3
D = - ( x2 - x - 3 )
D = - [ x2 - 2 . x . 1 / 2 + ( 1 / 2 )2 - ( 1 / 2 )2 - 3 ]
D = - [ ( x - 1 / 2 )2 - 13 / 4 ]
D = - ( x - 1 / 2 )2 + 13 / 4 \(\le\)13 / 4
Dấu " = " xảy ra \(\Leftrightarrow\)x - 1 / 2 = 0
\(\Rightarrow\)x = 1 / 2
Max D = 13 / 4 \(\Leftrightarrow\)x = 1 / 2
D=x-x^2+3
D= -[x^2 -x +1/4 ] + 13/4
D=-(x-1/2)^2 +13/4
Vì -(x-1/2)^2<=0 => D<=13/4
Dấu = xảy ra <=> x-1/2=0 <=> x=1/2
\(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
Phân tích các đa thức sau thành nhân tử ... c) 6x(x+y)^2+3x^2y(x+y). 2: .... x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x. x3 - 9x2 ..... Phân tích các đa thức sau thành nhân tử : a,x^3+5x^2+8x+4 b, x^3-9x^2+6x+16 .
Ta có a(b+c)^2 +b(c+a)^2+c(a+b)^2 =4abc
ab^2+ac^2+2abc+ba^2bc^2+2abc+ca^2+cb^2+2abc=4abc
ab^2+ac^2+bc^2+ba^2+cb^2+ca^2+2abc=0
(ab^2+abc)+(ac^2+abc)+(bc^2+cb^2)+(a^2b+a^2c)=0
ab(b+c)+ac(b+c)+bc(b+c)+a^2(b+c)=0
(b+c)(ab+ac+bc+a^2)=0
(b+c)(a+b)(a+c)=0
*th1:b+c=0=> b=-c
=> b^2017 +c^2017 =0
mà a^2017 +b^2017 +c^2017=1
=>a^2017=1 => a=1
thay vào A rồi dc A=1
các th khác tương tự
\(C=x^2-4x+8\)
\(C=x^2-4x+4+4\)
\(C=\left(x-4\right)^2+4\ge4\)
Dấu bằng xảy ra
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
Vậy Min A = 4 <=> x= 4
giải lun câu này dùm ik: D= x- x^2+ 3. Tìm GTNN hoặc GTLN
\(\left(3x-2\right)\left(x^2-4x+5\right)\)
\(=3x^3-12x^2+15x-2x^2+8x-10\)
\(=3x^3-14x^2+23x-10\)